首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   46篇
  2023年   5篇
  2022年   3篇
  2021年   21篇
  2020年   14篇
  2019年   14篇
  2018年   17篇
  2017年   16篇
  2016年   30篇
  2015年   34篇
  2014年   38篇
  2013年   38篇
  2012年   57篇
  2011年   49篇
  2010年   16篇
  2009年   20篇
  2008年   30篇
  2007年   37篇
  2006年   28篇
  2005年   18篇
  2004年   15篇
  2003年   20篇
  2002年   21篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有578条查询结果,搜索用时 116 毫秒
61.
Plant viruses move through plasmodesmata (PD) either as nucleoprotein complexes (NPCs) or as tubule-guided encapsidated particles with the help of movement proteins (MPs). To explore how and why MPs specialize in one mechanism or the other, we tested the exchangeability of MPs encoded by DNA and RNA virus genomes by means of an engineered alfalfa mosaic virus (AMV) system. We show that Caulimoviridae (DNA genome virus) MPs are competent for RNA virus particle transport but are unable to mediate NPC movement, and we discuss this restriction in terms of the evolution of DNA virus MPs as a means of mediating DNA viral genome entry into the RNA-trafficking PD pathway.Following virus entry and replication, successful infection of a host requires viral spread to distal parts of the organism through the vascular tissue. In plants, virus movement involves mostly symplastic trafficking of different viral components through the connections of plasmodesmata (PD) (13). With this aim, plant viruses encode one or more movement proteins (MPs), which allow viral genomes to cross the host cell wall by altering the size exclusion limit (SEL) or the structure of PD (6, 11). Plant viruses have evolved distinct mechanisms to move their genomes within the host. These mechanisms can be grouped into two general strategies: one in which the genome is transported in the form of a nucleoprotein complex (NPC) and another in which nucleic acids are encapsidated and move as virus particles. In both cases, besides altering PD SEL, MPs are involved either in NPC assembly or in forming tubules traversing modified PD and helping transport of either NPC or virions to the neighboring cell. Within these two major strategies, there exists a wide range of variability in terms of the number and type of viral and host proteins helping MPs to mediate virus spread within the host (11).In spite of such variability, several different MPs have been classified into a 30K superfamily; these MPs, from 20 genera including both RNA and DNA genome viruses, are structurally related to the 30-kDa MP of Tobacco mosaic virus (TMV), independent of the movement strategy followed (14). Members of this family have a common core of predicted secondary structure elements (α-helices and β-elements) containing a nucleic acid binding domain. Distinct MPs belong to this family, including several tubule-forming MPs, although these are phylogenetically separated from the other members (14). Thus, 30K superfamily MPs are closely related, and some of them are functionally interchangeable in the viral context (2, 20). In particular, MPs from five distinct genera with an RNA genome can successfully replace the corresponding gene of Alfalfa mosaic virus (AMV) (19), indicating that one or more basic and fundamental movement properties might be associated with the common 30K structural core.Among all known plant viruses, only three viral families have evolved a DNA genome: Geminiviridae, Caulimoviridae, and Nanoviridae (6). One possible explanation for this restriction is that endogenous cell-to-cell transport via PD is specialized to use RNA as the communication and signaling molecule (12). To circumvent this restriction, and to allow the efficient exploitation of endogenous transport machineries, DNA genome viruses have evolved appropriate mechanisms involving their MPs. Interestingly, Begomovirus and Caulimovirus MPs also belong to the 30K superfamily discussed above (14). The MP encoded by Cauliflower mosaic virus (CaMV), the type member of Caulimoviridae, forms tubules that guide the movement of encapsidated virus via an indirect MP-virion interaction (16, 21), whereas geminivirus MPs selectively bind their genomes and transport them as NPCs (6, 9, 17). In this study, we investigated the evolutionary convergence of MPs encoded by DNA and RNA viruses by testing their exchangeability in the viral context.  相似文献   
62.
Centromere repositioning (CR) is a recently discovered biological phenomenon consisting of the emergence of a new centromere along a chromosome and the inactivation of the old one. After a CR, the primary constriction and the centromeric function are localized in a new position while the order of physical markers on the chromosome remains unchanged. These events profoundly affect chromosomal architecture. Since horses, asses, and zebras, whose evolutionary divergence is relatively recent, show remarkable morphological similarity and capacity to interbreed despite their chromosomes differing considerably, we investigated the role of CR in the karyotype evolution of the genus Equus. Using appropriate panels of BAC clones in FISH experiments, we compared the centromere position and marker order arrangement among orthologous chromosomes of Burchelli's zebra (Equus burchelli), donkey (Equus asinus), and horse (Equus caballus). Surprisingly, at least eight CRs took place during the evolution of this genus. Even more surprisingly, five cases of CR have occurred in the donkey after its divergence from zebra, that is, in a very short evolutionary time (approximately 1 million years).These findings suggest that in some species the CR phenomenon could have played an important role in karyotype shaping, with potential consequences on population dynamics and speciation.  相似文献   
63.
The onset of autoimmune diseases is proposed to involve binding promiscuity of antibodies (Abs) and T‐cells, an often reported yet poorly understood phenomenon. Here, we attempt to approach two questions: first, is binding promiscuity a general feature of monoclonal antibodies (mAbs) and second, what is the molecular basis for polyspecificity? To this end, the anti‐cholera toxin peptide 3 (CTP3) mAb TE33 was investigated for polyspecific binding properties. Screening of phage display libraries identified two epitope‐unrelated peptides that specifically bound TE33 with affinities similar to or 100‐fold higher than the wild‐type epitope. Substitutional analyses revealed distinct key residue patterns recognized by the antibody suggesting a unique binding mode for each peptide. A database query with one of the consensus motifs and a subsequent binding study uncovered 45 peptides (derived from heterologous proteins) that bound TE33. To better understand the structural basis of the observed polyspecificity we modeled the new cyclic epitope in complex with TE33. The interactions between this peptide and TE33 suggested by our model are substantially different from the interactions observed in the X‐ray structure of the wild‐type epitope complex. However, the overall binding conformation of the peptides is similar. Together, our results support the theory of a general polyspecific potential of mAbs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
64.
65.
The development of stratified retinal cell architecture is highly conserved in all vertebrates, implying that a common fundamental molecular mechanism is involved in the generation of the organized retina. However, the detailed molecular mechanisms of retinal development are not fully understood. Here we have identified the Xenopus ortholog of prune and show that it is expressed in both differentiating and differentiated retinal domains during development. Interestingly, these spatial and temporal expression patterns coincide with the expression of prune binding partners, the NM23 family members. Overexpression of prune in retinal precursor cells significantly increases the ratio of Müller glial cells as observed by modulation of NM23 activity (Mochizuki et al., 2009). However, a mutated form of prune that has replacement of four aspartate (D) residues (D'Angelo et al., 2004), essential for phosphodiesterase activity, does not exhibit gliogenic activity. Our observations suggest that Xenopus prune may regulate Müller gliogenesis through phosphodiesterase-mediated regulation of NM23 family members.  相似文献   
66.
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer??s disease, Parkinson??s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host??s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.  相似文献   
67.
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.  相似文献   
68.
Elucidating the pattern of genetic diversity for non-European populations is necessary to make the benefits of human genetics research available to individuals from these groups. In the era of large human genomic initiatives, Native American populations have been neglected, in particular, the Quechua, the largest South Amerindian group settled along the Andes. We characterized the genetic diversity of a Quechua population in a global setting, using autosomal noncoding sequences (nine unlinked loci for a total of 16 kb), 351 unlinked SNPs and 678 microsatellites and tested predictions of the model of the evolution of Native Americans proposed by (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496). European admixture is <5% and African ancestry is barely detectable in the studied population. The largest genetic distances were between African versus Quechua or Melanesian populations, which is concordant with the African origin of modern humans and the fact that South America was the last part of the world to be peopled. The diversity in the Quechua population is comparable with that of Eurasian populations, and the allele frequency spectrum based on resequencing data does not reflect a reduction in the proportion of rare alleles. Thus, the Quechua population is a large reservoir of common and rare genetic variants of South Amerindians. These results are consistent with and complement our evolutionary model of South Amerindians (Tarazona-Santos et al.: Am J Hum Genet 68 (2001) 1485-1496), proposed based on Y-chromosome data, which predicts high genomic diversity due to the high level of gene flow between Andean populations and their long-term effective population size.  相似文献   
69.
Epidemiological studies suggest that viral infections during childhood are a risk factor for the development of asthma. However, the role of virus-specific pattern recognition receptors in this process is not well defined. In the current study, we compare the effects of the inhaled viral TLR ligands polyinosinic-polycytidylic acid (TLR3) and resiquimod (TLR7/8) on sensitization to a model allergen (OVA) in a murine model. Both compounds enhance the migration, activation, and Ag-processing of myeloid dendritic cells from the lung to the draining lymph nodes comparable to the effects of LPS. Application of polyinosinic-polycytidylic acid [poly(I:C)] or LPS induces production of allergen-specific IgE and IgG1, whereas resiquimod (R848) had no effect. In addition, rechallenge of mice with OVA resulted in airway inflammation and mucus production in animals that received either poly(I:C) or LPS but not after application of R848. In summary, these results show that activation of TLR3 in combination with inhaled allergen results in induction of dendritic cell activation and migration similar to the effects of LPS. This leads to the development of allergic airway disease after allergen rechallenge, whereas mice treated with R848 did not develop allergic airway disease. These findings give further insight into the effects of stimulation of different TLRs on the development of asthma.  相似文献   
70.
Efficient micropropagation and cryopreservation of Hypericum richeri ssp. transsilvanicum, an endemic species in Romania, and Hypericum umbellatum, a rare and endangered Daco-Balkan species, was achieved. The effects of type of explant and cytokinin on in vitro plant regeneration were investigated. Shoot organogenesis was achieved in all explants, but stem nodes regenerated best. Organogenesis from nodal segments was promoted by incubating these explants on Murashige and Skoog (MS) medium in the presence of cytokinins (6-benzyladenine, thidiazuron, kinetin or 6-??,??-dimethylallylaminopurine), each tested at four concentrations. The best morphogenic response for both Hypericum species (number of shoots per explant, shoot length, axillary branching of shoot, and frequency of shoot organogenesis) was observed when explants were incubated on MS medium containing 0.44 or 1.11???M 6-benzyladenine. Root induction was achieved only when regenerated shoots were transferred to fresh medium with or without auxin. Maximum rooting was recorded on MS medium supplemented with 2.45???M indole-3-butyric acid. Plantlets grown in vitro were successfully acclimatized in the greenhouse and showed normal development. Shoot tips and axillary buds excised from the in vitro regenerated plants were successfully cryopreserved in liquid nitrogen by the droplet-vitrification method. Following preculture in 0.25?M sucrose, dehydration and cryopreservation, the highest regeneration rates were obtained in both species by using axillary buds (68?% for H. richeri ssp. transsilvanicum and 71?% for H. umbellatum).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号