首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   71篇
  2023年   6篇
  2022年   3篇
  2021年   13篇
  2020年   10篇
  2019年   14篇
  2018年   15篇
  2017年   12篇
  2016年   26篇
  2015年   43篇
  2014年   44篇
  2013年   70篇
  2012年   63篇
  2011年   62篇
  2010年   55篇
  2009年   28篇
  2008年   60篇
  2007年   47篇
  2006年   43篇
  2005年   36篇
  2004年   42篇
  2003年   40篇
  2002年   44篇
  2001年   8篇
  2000年   10篇
  1999年   9篇
  1998年   19篇
  1997年   9篇
  1996年   6篇
  1995年   11篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1975年   3篇
  1972年   2篇
  1971年   2篇
  1965年   2篇
  1949年   1篇
排序方式: 共有924条查询结果,搜索用时 171 毫秒
101.
Post-translational modification of nucleocytoplasmic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) has for the last 25 years emerged as an essential glucose-sensing mechanism. The liver X receptors (LXRs) function as nutritional sensors for cholesterol-regulating lipid metabolism, glucose homeostasis, and inflammation. LXRs are shown to be post-translationally modified by phosphorylation, acetylation, and sumoylation, affecting their target gene specificity, stability, and transactivating and transrepressional activity, respectively. In the present study, we show for the first time that LXRα and LXRβ are targets for glucose-hexosamine-derived O-GlcNAc modification in human Huh7 cells. Furthermore, we observed increased hepatic LXRα O-GlcNAcylation in vivo in refed mice and in streptozotocin-induced refed diabetic mice. Importantly, induction of LXRα O-GlcNAcylation in both mouse models was concomitant with increased expression of the lipogenic gene SREBP-1c (sterol regulatory element-binding protein 1c). Furthermore, glucose increased LXR/retinoic acid receptor-dependent activation of luciferase reporter activity driven by the mouse SREBP-1c promoter via the hexosamine biosynthetic pathway in Huh7 cells. Altogether, our results suggest that O-GlcNAcylation of LXR is a novel mechanism by which LXR acts as a glucose sensor affecting LXR-dependent gene expression, substantiating the crucial role of LXR as a nutritional sensor in lipid and glucose metabolism.  相似文献   
102.
103.
104.
Novispirin G-10 is an 18-residue designed cationic peptide derived from the N-terminal part of an antimicrobial peptide from sheep. This derivative is more specific for bacteria than the parent peptide. We have analyzed Novispirin's interactions with various amphipathic molecules and find that a remarkably wide variety of conditions induce alpha-helical structure. Optimal structure induction by lipids occurs when the vesicles contain 40-80% anionic lipid, while pure anionic lipid vesicles induce aggregation. SDS also forms aggregates with Novispirin at submicellar concentrations but induces alpha-helical structures above the cmc. Both types of aggregates contain significant amounts of beta-sheet structure, highlighting the peptide's structural versatility. The cationic detergent LTAC has a relatively strong affinity for the cationic peptide despite the peptide's net positive charge of +7 at physiological pH and total lack of negatively charged side chains. Zwitterionic and nonionic detergents induce alpha-helical structures at several hundred millimolar detergent. We have solved the peptide structure in SDS and LTAB by NMR and find subtle differences compared to the structure in TFE, which we ascribe to the interaction with an amphiphilic environment. Novispirin is largely buried in the SDS-micelle, whereas it does not enter the LTAC-micelle but merely forms a dynamic equilibrium between surface-bound and nonbound Novispirin. Thus, electrostatic repulsion can be overruled by relatively high-detergent concentrations or by deprotonating a single critical side chain, despite the fact that Novispirin's ability to bind to amphiphiles and form alpha-helical structure is sensitive to the electrostatics of the amphiphilic environment. This emphasizes the versatility of cationic antimicrobial peptides' interactions with amphiphiles.  相似文献   
105.
The kinetics of thermally induced aggregation of the glycoprotein Peniophora lycii phytase (Phy) and a deglycosylated form (dgPhy) was studied by dynamic (DLS) and static (SLS) light scattering. This provided a detailed insight into the time course of the formation of small aggregates ( approximately 10-100 molecules) of the enzyme. The thermodynamic stability of the two forms was also investigated using scanning calorimetry (DSC). It was found that the glycans strongly promoted kinetic stability (i.e., reduced the rate of irreversible denaturation) while leaving the equilibrium denaturation temperature, T(d), defined by DSC, largely unaltered. At pH 4.5-5.0, for example, dgPhy aggregated approximately 200 times faster than Phy, even though the difference in T(d) was only 1-3 degrees C. To elucidate the mechanism by which the glycans promote kinetic stability, we measured the effect of ionic strength and temperature on the aggregation rate. Also, the second virial coefficients (B(22)) for the two forms were measured by SLS. These results showed that the aggregation rate of Phy scaled with the concentration of thermally denatured protein. This suggested first-order kinetics with respect to the concentration of the thermally denatured state. A similar but less pronounced correlation was found for dgPhy, and it was suggested that while the aggregation process for the deglycosylated form is dominated by denatured protein, it also involves a smaller contribution from associating molecules in the native state. The measurements of B(22) revealed that dgPhy had slightly higher values than Phy. This suggests that dgPhy interacts more favorably with the buffer than Phy and hence rules out strong hydration of the glycans as the origin of their effect on the kinetic stability. On the basis of this and the effects of pH and ionic strength, we suggest that the inhibition of aggregation is more likely to depend on steric hindrance of the glycans in the aggregated form of the protein.  相似文献   
106.
Tan Q  Christiansen L  Bathum L  Li S  Kruse TA  Christensen K 《Genetics》2006,172(3):1821-1828
Although the case-control or the cross-sectional design has been popular in genetic association studies of human longevity, such a design is prone to false positive results due to sampling bias and a potential secular trend in gene-environment interactions. To avoid these problems, the cohort or follow-up study design has been recommended. With the observed individual survival information, the Cox regression model has been used for single-locus data analysis. In this article, we present a novel survival analysis model that combines population survival with individual genotype and phenotype information in assessing the genetic association with human longevity in cohort studies. By monitoring the changes in the observed genotype frequencies over the follow-up period in a birth cohort, we are able to assess the effects of the genotypes and/or haplotypes on individual survival. With the estimated parameters, genotype- and/or haplotype-specific survival and hazard functions can be calculated without any parametric assumption on the survival distribution. In addition, our model estimates haplotype frequencies in a birth cohort over the follow-up time, which is not observable in the multilocus genotype data. A computer simulation study was conducted to specifically assess the performance and power of our haplotype-based approach for given risk and frequency parameters under different sample sizes. Application of our method to paraoxonase 1 genotype data detected a haplotype that significantly reduces carriers' hazard of death and thus reveals and stresses the important role of genetic variation in maintaining human survival at advanced ages.  相似文献   
107.
Microbial diversity and function in soil: from genes to ecosystems   总被引:26,自引:0,他引:26  
Soils sustain an immense diversity of microbes, which, to a large extent, remains unexplored. A range of novel methods, most of which are based on rRNA and rDNA analyses, have uncovered part of the soil microbial diversity. The next step in the era of microbial ecology is to extract genomic, evolutionary and functional information from bacterial artificial chromosome libraries of the soil community genomes (the metagenome). Sophisticated analyses that apply molecular phylogenetics, DNA microarrays, functional genomics and in situ activity measurements will provide huge amounts of new data, potentially increasing our understanding of the structure and function of soil microbial ecosystems, and the interactions that occur within them. This review summarizes the recent progress in studies of soil microbial communities with focus on novel methods and approaches that provide new insight into the relationship between phylogenetic and functional diversity.  相似文献   
108.
109.
GCK-MODY, dominantly inherited mild fasting hyperglycemia, has been associated with >600 different mutations in the glucokinase (GK)-encoding gene (GCK). When expressed as recombinant pancreatic proteins, some mutations result in enzymes with normal/near-normal catalytic properties. The molecular mechanism(s) of GCK-MODY due to these mutations has remained elusive. Here, we aimed to explore the molecular mechanisms for two such catalytically 'normal' GCK mutations (S263P and G264S) in the F260-L270 loop of GK. When stably overexpressed in HEK293 cells and MIN6 β-cells, the S263P- and G264S-encoded mutations generated misfolded proteins with an increased rate of degradation (S263P>G264S) by the protein quality control machinery, and a propensity to self-associate (G264S>S263P) and form dimers (SDS resistant) and aggregates (partly Triton X-100 insoluble), as determined by pulse-chase experiments and subcellular fractionation. Thus, the GCK-MODY mutations S263P and G264S lead to protein misfolding causing destabilization, cellular dimerization/aggregation and enhanced rate of degradation. In silico predicted conformational changes of the F260-L270 loop structure are considered to mediate the dimerization of both mutant proteins by a domain swapping mechanism. Thus, similar properties may represent the molecular mechanisms for additional unexplained GCK-MODY mutations, and may also contribute to the disease mechanism in other previously characterized GCK-MODY inactivating mutations.  相似文献   
110.
The 219-residue protein p25α stimulates the fibrillation of α-synuclein (αSN) in vitro and colocalizes with it in several α-synucleinopathies. Although p25α does not fibrillate by itself under native conditions in vitro, αSN-free p25α aggregates have also been observed in vivo in, for example, multiple system atrophy. To investigate which environmental conditions might trigger this aggregation, we investigated the effect of polyanionic biomolecules on p25α aggregation. Heparin, polyglutamate, arachidonic acid micelles, and RNA all induce p25α aggregation. More detailed studies using heparin as template for aggregation reveal that a minimum of 10-14 heparin monosaccharide units per heparin polymer are required. Bona fide fibrils are only formed at intermediate heparin concentrations, possibly because an excess of heparin binding sites blocks the inter-p25α contacts required for amyloid formation. Other polyanions also show an optimum for amyloid formation. Aggregation involves only modest structural changes according to both spectroscopic and proteolytic experiments. The aggregates do not seed aggregation of heparin-free p25α, suggesting that heparin is required in stoichiometric amounts to form organized structures. We are able to reproduce these observations in a model involving two levels of binding of p25α to heparin. We conclude that the modest structural changes that p25α undergoes can promote weak intermolecular contacts and that polyanions such as heparin play a central role in stabilizing these aggregates but in multiple ways, leading to different types of aggregates. This highlights the role of non-protein components in promoting protein aggregation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号