首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   169篇
  国内免费   293篇
  2024年   8篇
  2023年   40篇
  2022年   54篇
  2021年   156篇
  2020年   91篇
  2019年   108篇
  2018年   94篇
  2017年   90篇
  2016年   134篇
  2015年   190篇
  2014年   186篇
  2013年   199篇
  2012年   221篇
  2011年   186篇
  2010年   131篇
  2009年   88篇
  2008年   94篇
  2007年   69篇
  2006年   71篇
  2005年   50篇
  2004年   58篇
  2003年   42篇
  2002年   28篇
  2001年   10篇
  2000年   17篇
  1999年   19篇
  1998年   13篇
  1997年   13篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1953年   1篇
排序方式: 共有2514条查询结果,搜索用时 15 毫秒
61.

Objective

Mutations in the gene encoding isocitrate dehydrogenease 1 (IDH1) occur in various hematopoietic tumors including acute myeloid leukemia (AML), myeloproliferative neoplasms and myelodysplastic syndromes. IDH1 mutations are significant in both diagnosis and prognosis of these conditions. In the present study we determined the prevalence and clinical significance of IDH1 mutations in 349 samples from newly diagnosed AML patients.

Results

Of the 349 AML patient specimens analyzed, 35 (10.03%) were found to have IDH1 mutations including 4 IDH1 R132 mutations and 31 non-R132 mutations. IDH1 non-R132 mutations were largely concentrated within AML-M1 (35.72%, p<0.01). We identified five IDH1 mutations that were novel to AML: (1) c.299 G>A, p.R100Q; (2) c.311G>T, p.G104V; (3) c.322T>C, p.F108L; (4) c.356G>A, p.R119Q; and (5) c.388A>G, p.I130V. In addition, we identified three IDH1 mutations that were previously described in AML. The frequency of IDH1 mutations in AML patients with normal karyotype was 9.9%. IDH1 non-R132 mutations were concurrent with mutations in FLT3-ITD (p<0.01), CEBPA (p<0.01), and NRAS (p<0.01), as well as the overexpression of MN1 (p<0.01) and WT1(p<0.01). The overall survival (OS) in the patients with IDH1 non-R132 mutations compared to patients without IDH1 mutations don''t reach statistically significance (median 521 days vs median: not reached; n.s.).

Conclusion

IDH1 non-R132 mutations occurred frequently in newly diagnosed adult Chinese AML patients, and these mutations were associated with genetic alterations. The OS was not influenced by IDH1 non-R132 mutations in the present study.  相似文献   
62.
63.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   
64.
Colorectal cancer (CRC) is one of the common malignant tumors worldwide. Both genetic and epigenetic changes are regarded as important factors of colorectal carcinogenesis. Loss of DACH1 expression was found in breast, prostate, and endometrial cancer. To analyze the regulation and function of DACH1 in CRC, 5 colorectal cancer cell lines, 8 cases of normal mucosa, 15 cases of polyps and 100 cases of primary CRC were employed in this study. In CRC cell lines, loss of DACH1 expression was correlated with promoter region hypermethylation, and re-expression of DACH1 was induced by 5-Aza-2'-deoxyazacytidine treatment. We found that DACH1 was frequently methylated in primary CRC and this methylation was associated with reduction in DACH1 expression. These results suggest that DACH1 expression is regulated by promoter region hypermethylation in CRC. DACH1 methylation was associated with late tumor stage, poor differentiation, and lymph node metastasis. Re-expression of DACH1 reduced TCF/LEF luciferase reporter activity and inhibited the expression of Wnt signaling downstream targets (c-Myc and cyclinD1). In xenografts of HCT116 cells in which DACH1 was re-expressed, tumor size was smaller than in controls. In addition, restoration of DACH1 expression induced G2/M phase arrest and sensitized HCT116 cells to docetaxel. DACH1 suppresses CRC growth by inhibiting Wnt signaling both in vitro and in vivo. Silencing of DACH1 expression caused resistance of CRC cells to docetaxel. In conclusion, DACH1 is frequently methylated in human CRC and methylation of DACH1 may serve as detective and prognostic marker in CRC.  相似文献   
65.
β-Amylase (EC 3.2.1.2), one of the main protein of the sweet potato, is an exo-working enzyme catalyzing the hydrolysis of α(1,4) glycosidic linkages in polysaccharides and removes successively maltose units from the non-reducing ends. The enzyme belongs to glycoside hydrolase GH14 family and inverts the anomeric configuration of the hydrolysis product. Multiple attack or processivity is an important property of polymer active enzymes and there is still limited information about the processivity of carbohydrate active enzymes. Action pattern and kinetic measurements of sweet potato β-amylase were made on a series of aromatic chromophor group-containing substrates (degree of polymerization DP 3-13) using HPLC method. Measured catalytic efficiencies increased with increasing DP of the substrates. Processive cleavage was observed on all substrates except the shortest pentamer. The mean number of steps without dissociation of enzyme–product complex increases with DP of substrate and reached 3.3 in case of CNPG11 indicating that processivity on longer substrates was more significant. A unique transglycosylation was observed on those substrates, which suffer processive cleavage and the substrates were re-built by the enzyme. Our results are the first presentation of a transglycosylation during an inverting glycosidase catalyzed hydrolysis. The yield of transglycosylation was remarkable high as shown in the change of the CNPG11 quantity. The CNPG11 concentration was doubled (from 0.24 to 0.54 mM) in the early phase of the reaction.  相似文献   
66.
Multi-species compartment epidemic models, such as the multi-species susceptible–infectious–recovered (SIR) model, are extensions of the classic SIR models, which are used to explore the transient dynamics of pathogens that infect multiple hosts in a large population. In this article, we propose a dynamical Bayesian hierarchical SIR (HSIR) model, to capture the stochastic or random nature of an epidemic process in a multi-species SIR (with recovered becoming susceptible again) dynamical setting, under hidden mass balance constraints. We call this a Bayesian hierarchical multi-species SIR (MSIRB) model. Different from a classic multi-species SIR model (which we call MSIRC), our approach imposes mass balance on the underlying true counts rather than, improperly, on the noisy observations. Moreover, the MSIRB model can capture the discrete nature of, as well as uncertainties in, the epidemic process.  相似文献   
67.
The present study was aimed at investigating the expression of metastasis-associated in colon cancer 1 (MACC1) in nasopharyngeal carcinoma (NPC), its relationship with β-catenin, Met expression and the clinicopathological features of NPC, and its roles in carcinogenesis of NPC. Our results showed that MACC1 expression was higher in NPC cells and tissues than that in normal nasopharyngeal cells and chronic inflammation of the nasopharynx tissues, respectively. MACC1 expression was closely related to the clinical stage (p = 0.005) and the N classification (p<0.05) of NPC. Significant correlations between MACC1 expression and Met expression (p = 0.003), MACC1 expression and β-catenin abnormal expression (p = 0.033) were found in NPC tissues. MACC1 knockdown dramatically inhibited cellular proliferation, migration, invasion, and colony formation, but induced apoptosis in NPC cells compared with the control group. Furthermore, MACC1 down-regulation inhibited phosphorylated-Akt (Ser473) and β-catenin expression in NPC cells, but phosphorylated-Erk1/2 expression was not altered. Further study showed that phosphotidylinsitol-3-kinase inhibitor downregulated β-catenin and Met expression in NPC cells. There was a significant relationship between MACC1 expression and phosphorylated-Akt expression (p = 0.03), β-catenin abnormal expression and phosphorylated-Akt expression (p = 0.012) in NPC tissue, respectively. In addition, Epstein Barr virus-encoded oncogene latent membrane protein 1 upregulated MACC1 expression in NPC cells. Our results firstly suggest that MACC1 plays an important role in carcinogenesis of NPC through Akt/β-catenin signaling pathway. Targeting MACC1 may be a novel therapeutic strategy for NPC.  相似文献   
68.

Background

To assess the association between MTHFR polymorphism and cervical cancer risk, a meta-analysis was performed.

Methods

Based on comprehensive searches of the PubMed, Embase, and Web of Science databases, we identified outcome data from all articles estimating the association between MTHFR polymorphism and cervical cancer risk. The pooled odds ratio (OR) with 95% confidence intervals (CIs) were calculated.

Results

A total of 12 studies with 2,924 cases (331 cervical intraepithelial neoplasia (CIN) I, 742 CIN II/III, 1851 invasive cervical cancer) and 2,581 controls were identified. There was no significant association between MTHFR C677T polymorphism and CIN I risk (T vs. C, OR = 1.10, 95% CI = 0.92–1.31; TT vs. CC, OR = 1.14, 95% CI = 0.78–1.68; TT+CT vs. CC, OR = 1.22, 95% CI = 0.94–1.58; TT vs. CT+CC, OR = 0.99, 95% CI = 0.70–1.40). For the CIN II/III, lack of an association was also found (T vs. C, OR = 1.08, 95% CI = 0.95–1.23; TT vs. CC, OR = 1.15, 95% CI = 0.87–1.52; TT+CT vs. CC, OR = 1.13, 95% CI = 0.94–1.35; TT vs. CT+CC, OR = 1.07, 95% CI = 0.83–1.38). The T allele had significant association to susceptibility of invasive cervical cancer in recessive model (TT vs. CT+CC, OR = 1.23, 95% CI = 1.02–1.49). On subgroup analysis by ethnicity, similarly significant differences in T vs. C, TT vs. CC, and recessive model were found in Asians.

Conclusion

The present meta-analysis suggested that MTHFR C677T polymorphism were to substantially contribute to invasive cervical cancer in recessive model.  相似文献   
69.
The latent membrane protein 1 (LMP1), which is encoded by the Epstein-Barr virus (EBV), is an important oncogenic protein that is closely related to carcinogenesis and metastasis of nasopharyngeal carcinoma (NPC), a prevalent cancer in China. We previously reported that the expression of the functional chemokine receptor CXCR4 is associated with human NPC metastasis. In this study, we show that LMP1 induces tyrosine sulfation of CXCR4 through tyrosylprotein sulfotransferase-1 (TPST-1), an enzyme that is responsible for catalysis of tyrosine sulfation in vivo, which is likely to contribute to the highly metastatic character of NPC. LMP1 could induce tyrosine sulfation of CXCR4 and its associated cell motility and invasiveness in a NPC cell culture model. In contrast, the expression of TPST-1 small interfering RNA reversed LMP1-induced tyrosine sulfation of CXCR4. LMP1 conveys signals through the epidermal growth factor receptor (EGFR) pathway, and EGFR-targeted siRNA inhibited the induction of TPST-1 by LMP1. We used a ChIP assay to show that EGFR could bind to the TPST-1 promoter in vivo under the control of LMP1. A reporter gene assay indicated that the activity of the TPST-1 promoter could be suppressed by deleting the binding site between EGFR and TPST-1. Finally, in human NPC tissues, the expression of TPST-1 and LMP1 was directly correlated and clinically, the expression of TPST-1 was associated with metastasis. These results suggest the up-regulation of TPST-1 and tyrosine sulfation of CXCR4 by LMP1 might be a potential mechanism contributing to NPC metastasis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号