首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4449篇
  免费   370篇
  2022年   14篇
  2021年   62篇
  2020年   48篇
  2019年   45篇
  2018年   70篇
  2017年   58篇
  2016年   113篇
  2015年   168篇
  2014年   183篇
  2013年   266篇
  2012年   333篇
  2011年   355篇
  2010年   210篇
  2009年   212篇
  2008年   289篇
  2007年   283篇
  2006年   282篇
  2005年   250篇
  2004年   245篇
  2003年   247篇
  2002年   253篇
  2001年   42篇
  2000年   34篇
  1999年   45篇
  1998年   61篇
  1997年   40篇
  1996年   39篇
  1995年   37篇
  1994年   37篇
  1993年   29篇
  1992年   27篇
  1991年   22篇
  1990年   31篇
  1989年   19篇
  1988年   15篇
  1987年   16篇
  1985年   18篇
  1984年   18篇
  1983年   17篇
  1982年   17篇
  1981年   17篇
  1980年   11篇
  1979年   16篇
  1978年   13篇
  1977年   13篇
  1976年   17篇
  1975年   12篇
  1974年   17篇
  1972年   13篇
  1969年   9篇
排序方式: 共有4819条查询结果,搜索用时 15 毫秒
91.
It remains poorly understood how effects of anthropogenic activity, such as large-scale habitat fragmentation, impact sociality in animals. In cooperatively breeding species, groups are mostly formed through delayed offspring dispersal, and habitat fragmentation can affect this process in two opposite directions. Increased habitat isolation may increase dispersal costs, promoting delayed dispersal. Alternatively, reduced patch size and quality may decrease benefits of philopatry, promoting dispersal. Here, we test both predictions in a cooperatively breeding bird (placid greenbul, Phyllastrephus placidus) from an Afrotropical cloud forest archipelago. Males born in fragmented forest dispersed about 1 year earlier than those born in continuous forest. Contrary to females, males also started to reproduce earlier and mostly settled within their natal patch. Females only rarely delayed their dispersal for more than 1 year, both in fragmented and continuous forests. Our results suggest that early male dispersal and reproduction is jointly driven by a decrease in the value of the natal territory and an increase in local breeding opportunities in fragmented forest. While plasticity in dispersal strategies of cooperative breeders in response to anthropogenic change is believed to optimize reproduction-survival trade-offs, to what extent it shapes the ability of species to respond to rapid environmental change remains to be studied.  相似文献   
92.
Sib‐mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small‐scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate‐choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib‐mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib‐mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib‐mating avoidance. In addition, we detected a weak but significant male‐biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib‐mating. As such, the sex‐biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.  相似文献   
93.
Although mechanisms involved in response of Saccharomyces cerevisiae to osmotic challenge are well described for low and sudden stresses, little is known about how cells respond to a gradual increase of the osmotic pressure (reduced water activity; aw) over several generations as it could encounter during drying in nature or in food processes. Using glycerol as a stressor, we propagated S. cerevisiae through a ramp of the osmotic pressure (up to high molar concentrations to achieve testing-to-destruction) at the rate of 1.5 MPa day-1 from 1.38 to 58.5 MPa (0.990–0.635 aw). Cultivability (measured at 1.38 MPa and at the harvest osmotic pressure) and glucose consumption compared with the corresponding sudden stress showed that yeasts were able to grow until about 10.5 MPa (0.926 aw) and to survive until about 58.5 MPa, whereas glucose consumption occurred until 13.5 MPa (about 0.915 aw). Nevertheless, the ramp conferred an advantage since yeasts harvested at 10.5 and 34.5 MPa (0.778 aw) showed a greater cultivability than glycerol-shocked cells after a subsequent shock at 200 MPa (0.234 aw) for 2 days. FTIR analysis revealed structural changes in wall and proteins in the range 1.38–10.5 MPa, which would be likely to be involved in the resistance at extreme osmotic pressure.  相似文献   
94.
The complex process of phloem sugar transport involves symplasmic and apoplasmic events. We characterized Arabidopsis thaliana lines ectopically expressing a phloem-specific gene encoding NDR1/HIN1-like26 (NHL26), a putative membrane protein. NHL26 overexpressor plants grew more slowly than wild-type plants, accumulated high levels of carbohydrates in mature leaves, and had a higher shoot biomass, contrasting with slower root growth and a lower seed yield. Similar effects were observed when NHL26 was overexpressed in companion cells, under the control of a companion cell–specific promoter. The soluble sugar content of the phloem sap and sink organs was lower than that in the wild type, providing evidence of a sugar export defect. This was confirmed in a phloem-export assay with the symplastic tracer carboxyfluorescein diacetate. Leaf sugar accumulation was accompanied by higher organic acid, amino acid, and protein contents, whereas analysis of the metabolite profile of phloem sap exudate revealed no change in amino acid or organic acid content, indicating a specific effect on sugar export. NHL26 was found to be located in the phloem plasmodesmata and the endoplasmic reticulum. These findings reveal that NHL26 accumulation affects either the permeability of plasmodesmata or sugar signaling in companion cells, with a specific effect on sugar export.  相似文献   
95.
Abstract

The use of 5′-triphosphate of 1-(2-deoxy-β-D-ribofuranosyl)imidazole-4-carboxamide (dYTP) in DNA amplification reaction in place of dATP or dGTP yielded mutations frequencies of 3–4×10?2 per base per amplification. A reasonable proportion of transversions (11–15%) was observed in the absence of deletions and insertions.  相似文献   
96.
97.
Background aimsGraft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous studies have suggested that mesenchymal stromal cells (MSCs) could exert potent immunosuppressive effects.MethodsThe ability of human bone marrow derived MSCs to prevent xenogeneic GVHD in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice and in NOD/SCID/interleukin-2Rγ(null) (NSG) mice transplanted with human peripheral blood mononuclear cells (PBMCs) was assessed.ResultsInjection of 200 × 106 human PBMCs intraperitoneally (IP) into sub-lethally (3.0 Gy) irradiated NOD/SCID mice also given anti-asialo GM1 antibodies IP 1 day prior and 8 days after transplantation induced lethal xenogeneic GVHD in all tested mice. Co-injection of 2 × 106 MSCs IP on day 0 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Similarly, injection of 30 × 106 human PBMCs IP into sub-lethally (2.5 Gy) irradiated NSG mice induced a lethal xenogeneic GVHD in all tested mice. Injection of 3 × 106 MSCs IP on days 0, 7, 14 and 21 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs.ConclusionsInjection of MSCs did not prevent xenogeneic GVHD in these two humanized mice models.  相似文献   
98.

Background

Oxaliplatin is an anticancer drug used for the treatment of advanced colorectal cancer, but it can also cause painful peripheral neuropathies. The pathophysiology of these neuropathies has not been yet fully elucidated, but may involve spinal N-methyl-D-aspartate (NMDA) receptors, particularly the NR2B subunit. As polyamines are positive modulators of NMDA-NR2B receptors and mainly originate from dietary intake, the modulation of polyamines intake could represent an interesting way to prevent/modulate neuropathic pain symptoms by opposing glutamate neurotransmission.

Methods

The effect of a polyamine deficient diet was investigated in an animal model of oxaliplatin-induced acute pain hypersensitivity using behavioral tests (mechanical and cold hypersensitivity). The involvement of spinal glutamate neurotransmission was monitored by using a proton nuclear magnetic resonance spectroscopy based metabolomic approach and by assessing the expression and phosphorylation of the NR2B subunit of the NMDA receptor.

Results

A 7-day polyamine deficient diet totally prevented oxaliplatin-induced acute cold hypersensitivity and mechanical allodynia. Oxaliplatin-induced pain hypersensitivity was not associated with an increase in NR2B subunit expression or phosphorylation, but with an increase of glutamate level in the spinal dorsal horn which was completely prevented by a polyamine deficient diet. As a validation that the oxaliplatin-induced hypersensitivity could be due to an increased activity of the spinal glutamate system, an intrathecal administration of the specific NR2B antagonist, ifenprodil, totally reversed oxaliplatin-induced mechanical and cold hypersensitivity.

Conclusion

A polyamine deficient diet could represent a promising and valuable nutritional therapy to prevent oxaliplatin-induced acute pain hypersensitivity.  相似文献   
99.
Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces key experimental fMRI findings.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号