首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46962篇
  免费   3354篇
  国内免费   19篇
  2023年   145篇
  2022年   178篇
  2021年   910篇
  2020年   568篇
  2019年   682篇
  2018年   1027篇
  2017年   906篇
  2016年   1478篇
  2015年   2320篇
  2014年   2666篇
  2013年   2979篇
  2012年   3940篇
  2011年   3778篇
  2010年   2392篇
  2009年   2184篇
  2008年   3028篇
  2007年   2909篇
  2006年   2540篇
  2005年   2356篇
  2004年   2161篇
  2003年   1864篇
  2002年   1614篇
  2001年   1301篇
  2000年   1228篇
  1999年   990篇
  1998年   393篇
  1997年   338篇
  1996年   245篇
  1995年   210篇
  1994年   207篇
  1993年   172篇
  1992年   326篇
  1991年   295篇
  1990年   266篇
  1989年   226篇
  1988年   173篇
  1987年   163篇
  1986年   131篇
  1985年   105篇
  1984年   77篇
  1983年   84篇
  1982年   63篇
  1981年   53篇
  1980年   54篇
  1979年   69篇
  1978年   51篇
  1977年   50篇
  1976年   43篇
  1975年   42篇
  1974年   63篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
The genome ofCampylobacter jejuni was characterized by field inversion gel electrophoresis (FIGE) after digestion with three rare-cutting restriction endonucleases. The restriction enzymesSac II (5-CCGCGG),Sal I (5-GTCGAC), andSma I (5-CCCGGG) were found to produce 13, 5, and 8 fragments respectively from theC. jejuni genome. The fragment sizes ranged from 1.6 kb to 1300 kb, which gaveC. jejuni a genome size of approximately 1900 kb. Furthermore, thegly A and rRNA genes ofC. jejuni were localized to specific fragments by use of Southern analysis, and thegly A gene was shown to be closely linked to one of the three rRNA genes.  相似文献   
162.
163.
Restriction site and length variations of nrDNA were examined for 51 populations of seven species ofKrigia. The nrDNA repeat ranged in size from 8.7 to 9.6 kilobase (kb). The transcribed region, including the two ITSs, was 5.35 kb long in all examinedKrigia populations. In contrast, the size of the nontranscribed IGS varied from 3.35 to 4.25 kb. Eight different types of length-variations were identified among the 51 populations, including distinct nrDNA lengths in the tetraploid and diploid populations of bothK. biflora andK. virginica. However, a few variations were detected among populations of the same species or within a cytotype. All populations ofKrigia sect.Cymbia share a 600 bp insertion in IGS near the 18 S gene, and this feature suggests monophyly of the section. AllKrigia spp. had a conjugated type of subrepeat composed of approximately 75 basepairs (bp) and 125 bp. Base modifications in the gene coding regions were highly conserved among species. Forty-five restriction sites from 15 enzymes were mapped, 24 of which were variable among populations. Only four of the variable sites occurred in the rRNA coding region while 20 variable sites were detected in the noncoding regions. Collectively, 25 enzymes generated about 66 restriction sites in each nrDNA; this amounts to about 4.3% of the nrDNA repeat. A total of 50 restriction sites was variable, 28 of which were phylogenetically informative. Phylogenetic analyses of site mutations indicated that two sections ofKrigia, sect.Cymbia and sect.Krigia, are monophyletic. In addition, relationships among several species were congruent with other sources of data, such as cpDNA restriction site variation and morphology. Both length and restriction site variation supported an allopolyploid origin of the hexaploidK. montana. The average sequence divergence value inKrigia nrDNA was 40 times greater than that of the chloroplast DNA. The rapid evolution of nrDNA sequences was primarily due to changes of the IGS sequences.  相似文献   
164.
Nucleotide and primary sequence of a major rice prolamine   总被引:5,自引:0,他引:5  
W T Kim  T W Okita 《FEBS letters》1988,231(2):308-310
A recombinant cDNA clone encoding a major rice seed storage prolamine was isolated by antibody screening of a cDNA lambda gt 11 library. This clone contained a single open reading frame encoding a putative rice prolamine precursor (Mr 17,300). In contrast to other cereal prolamines, the primary sequence of the rice prolamine was devoid of any major tandem repetitive sequences, a feature prevalent in all cereal prolamines studied to date. No significant homology was detected between the rice prolamine and other cereal prolamines, indicating that the rice gene evolved from unique ancestral DNA segments.  相似文献   
165.
A comparative study of the accuracy of three different approaches to phylogenetic estimation was made on simulated data with differing rates of change in different lineages. The three approaches were maximum likelihood, maximum parsimony, and phenetic clustering. The data were generated by simulating genetic drift with different population sizes over a simple four-species tree topology. Although the accuracy of all three approaches was found to be dependent on the number of loci (characters), maximum likelihood was found to perform considerably and consistently better than maximum parsimony or phenetic clustering.  相似文献   
166.
167.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   
168.
Homogeneous deoxycytidine kinase has been isolated from leukemic human T-lymphoblasts by affinity chromatography based on a multisubstrate analog, deoxycytidine 5'-adenosine 5"'-P1,P4-tetraphosphate (dCp4A). Chromatography of extract treated with protease inhibitors yielded a monomeric polypeptide, inasmuch as the Mr of the native protein, 59,300, is comparable to the value of 52,000 from sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric pH was 6.1. But, enzyme isolated without protease inhibitors exhibited two fragments of Mr = 30,000 and 33,000, suggesting that proteolytic cleavage of the parental polypeptide had occurred during affinity chromatography. Both the parental and proteolyzed enzymes phosphorylated deoxyadenosine and deoxyguanosine, as well as deoxycytidine. However, the proteolyzed enzyme had an increased apparent Km for deoxycytidine. In consequence of this, a mixture of the two forms produced bimodal kinetic plots, whereas linear kinetics were displayed by each form alone.  相似文献   
169.
NAD+ glycohydrolase (NADase) present on the surface of rabbit erythrocytes is a membrane-bound ectoenzyme that can be solubilized by phosphatidylinositol-specific phospholipase C (PIPLC). As much as 70% of the cell-associated NADase was made soluble by treatment with PIPLC. The portion of NADase that remained cell-associated after an initial PIPLC treatment proved to be resistant to subsequent solubilization attempts. Further analysis showed that release of NADase from erythrocytes could not be attributed to the action of proteinases or phospholipase C. Erythrocytes obtained from other mammals were analyzed and found to have variable amounts of PIPLC-susceptible NADase. Practically, this finding can be used to easily solubilize membrane-bound NADase as a first step in its purification.  相似文献   
170.
Acetate kinase purified from Acinetobacter calcoaceticus was inhibited by diethylpyrocarbonate with a second-order rate constant of 620 M-1.min-1 at pH 7.4 at 30 degrees C and showed a concomitant increase in absorbance at 240 nm due to the formation of N-carbethoxyhistidyl derivative. Activity could be restored by hydroxylamine and the pH curve of inactivation indicates the involvement of a residue with a pKa of 6.64. Complete inactivation of acetate kinase required the modification of seven residues per molecule of enzyme. Statistical analysis showed that among the seven modifiable residues, only one is essential for activity. 5,5'-dithiobis(2-nitrobenzoic acid), p-chloromercuryphenylsulfonate, N-ethylmaleimide and phenylglyoxal did not affect the enzyme activity. These results suggest that the inactivation is due to the modification of one histidine residue. The substrates, acetate and ATP, protected the enzyme against inactivation, indicating that the modified histidine residue is located at or near the active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号