首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   75篇
  2023年   7篇
  2022年   3篇
  2021年   29篇
  2020年   17篇
  2019年   28篇
  2018年   20篇
  2017年   16篇
  2016年   45篇
  2015年   65篇
  2014年   62篇
  2013年   88篇
  2012年   82篇
  2011年   111篇
  2010年   59篇
  2009年   43篇
  2008年   67篇
  2007年   72篇
  2006年   53篇
  2005年   68篇
  2004年   55篇
  2003年   33篇
  2002年   44篇
  2001年   9篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1147条查询结果,搜索用时 31 毫秒
81.
The differential ability of forest herbs to colonize secondary forests on former agricultural land is generally attributed to different rates of dispersal. After propagule arrival, however, establishing individuals still have to cope with abiotic soil legacies from former agricultural land use. We focused on the plastic responses of forest herbs to increased phosphorus availability, as phosphorus is commonly found to be persistently bioavailable in post-agricultural forest soils. In a pot experiment performed under field conditions, we applied three P levels to four forest herbs with contrasting colonization capacities: Anemone nemorosa, Primula elatior, Circaea lutetiana and Geum urbanum. To test interactions with light availability, half of the replicas were covered with shade cloths. After two growing seasons, we measured aboveground P uptake as well as vegetative and regenerative performance. We hypothesized that fast-colonizing species respond the most opportunistically to increased P availability, and that a low light availability can mask the effects of P on performance. All species showed a significant increase in P uptake in the aboveground biomass. The addition of P had a positive effect on the vegetative performances of two of the species, although this was unrelated to their colonization capacities. The regenerative performance was affected by light availability (not by P addition) and was related to the species’ phenology. Forest herbs can obviously benefit from the increased availability of P in post-agricultural forests, but not all species respond in the same way. Such differential patterns of plasticity may be important in community dynamics, as they affect the interactions among species.  相似文献   
82.
Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the primary structure of lignin polymers. Our model predicts two controlling factors for the β-O-4 content of syringyl-guaiacyl lignins: the supply rate of monolignols and the relative amount of supplied sinapyl alcohol monomers. We have analyzed the in silico degradability of the resulting lignin polymers by cutting the resulting lignin polymers at β-O-4 bonds. These are cleaved in analytical methods used to study lignin composition, namely thioacidolysis and derivatization followed by reductive cleavage, under pulping conditions, and in some lignocellulosic biomass pretreatments.Lignins are aromatic polymers that are predominantly present in secondarily thickened cell walls. These polymers make the cell wall rigid and impervious, allowing transport of water and nutrients through the vascular system and protecting plants against microbial invasion. Lignins are heterogeneous polymers derived from phenylpropanoid monomers, mainly the hydroxycinnamyl alcohols coniferyl alcohol (G-monomer) and sinapyl alcohol (S-monomer) and minor amounts of p-coumaryl alcohol (H-monomer). These monolignols differ in their degree of aromatic methoxylation (-OCH3 group; Fig. 1). The resulting units in the lignin polymer are the guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) units. They are linked by a variety of chemical bonds (Fig. 2) that have different chemical properties (Boerjan et al., 2003; Ralph et al., 2004; Vanholme et al., 2008).Open in a separate windowFigure 1.Chemical structures of three monolignols. A, H-monomer (p-coumaryl alcohol). B, G-monomer (coniferyl alcohol). C, S-monomer (sinapyl alcohol). G- and S-monomers are considered in our simulations. The G-monomer is methoxylated (-OCH3 group) on position 3, and the S-monomer is methoxylated on positions 3 and 5.Open in a separate windowFigure 2.Chemical structures resulting from the possible bonding between two monomers (A) or a monomer and the bindable end of an oligomer (B). X and Y in the monomers denote the absence (for a G-unit) or presence (for an S-unit) of a methoxyl group at position 5 (see Fig. 1). The red line indicates the bonds generated by couplings of the B position and B, 4, or 5 position.Lignification is the process by which monomers and/or oligomers are polymerized via radical coupling reactions and typically occurs after the polysaccharides have been laid down in the cell wall. Lignin composition varies among cell types and can even be different in individual cell wall layers (Ruel et al., 2009). Lignin composition is also influenced by environmental conditions; for example, lignin in compression wood is enriched in H-units (Timell, 1986). Hence, both developmental and environmental parameters influence the composition and thus the structure of the lignin polymer (Boerjan et al., 2003; Ralph et al., 2004).Lignin is one of the main negative factors in the conversion of lignocellulosic plant biomass into pulp and bioethanol (Lynd et al., 1991; Hill et al., 2006). In these processes, lignin needs to be degraded by chemical or mechanical processes that are expensive and often environmentally polluting. Hence, major research efforts are devoted toward understanding lignin biosynthesis and structure. It has already been shown that reducing lignin content and modifying its composition in transgenic plants can result in dramatic improvements in pulping efficiency (Pilate et al., 2002; Baucher et al., 2003; Huntley et al., 2003; Leplé et al., 2007) and in the conversion of biomass into bioethanol (Stewart et al., 2006; Chen and Dixon, 2007; Custers, 2009). These altered biomass properties are related to the alterations in lignin composition and structure in terms of the frequencies of the lignin units and the bond types connecting them and possibly also their interaction with hemicelluloses (Ralph et al., 2004; Ralph, 2006).To study the parameters that influence lignin structure, lignin polymerization has been mimicked in vitro by experiments with dehydrogenation polymers (DHPs; Terashima et al., 1995). Indeed, lignification can be mimicked by oxidizing monolignols using a peroxidase, such as horseradish peroxidase (HRP), and supplying its cofactor hydrogen peroxide, producing synthetic DHP lignins. Monolignol oxidation can also be achieved without enzymes (e.g. by using transition metal one-electron oxidants, such as copper acetate). Some of these biomimetic DHPs have been suggested to be better models for wood lignins than HRP-generated DHPs (Landucci, 2000).In DHP experiments, the monolignols are either added in bulk (Zulauf experiment) or dropwise (Zutropf experiment) to the reaction mixture, yielding lignin polymers with very different bond frequencies (Freudenberg, 1956). Zutropf experiments approach the in vivo formation of lignin, which depends on the slow introduction of monolignols into the wall matrix via diffusion to the site of incorporation (Hatfield and Vermerris, 2001). Because the exact reaction conditions are known, such in vitro experiments have provided insight into the lignification process in planta. In this way, numerous factors were shown to influence lignin structure, including the relative supply of the monolignols, the pH, the presence of polysaccharides, hydrogen peroxide concentrations, and cell wall matrix elements in general (Grabber et al., 2003; Vanholme et al., 2008).Computer simulations of lignin polymerization can help explain and predict lignin structure from low-level chemical kinetic factors, including subunit-coupling probabilities and monolignol synthesis rates. Such models are helpful in explaining the mechanism behind a range of controlling factors identified in the experimental work, including (1) the ratio of coniferyl versus sinapyl alcohol monolignols, (2) the monolignol supply rate, and (3) the abundance of alternative monomers present during lignin biosynthesis in mutants and transgenics. Thus, computer models will also help in suggesting new targets for controlled lignin biosynthesis.Here, we propose a simulation model of synthetic lignin polymerization that is based upon an emerging consensus from a variety of observations and derives from a series of previous models of lignin polymerization (Glasser and Glasser, 1974; Glasser et al., 1976; Jurasek, 1995; Roussel and Lim, 1995). Our model uses a symbolic grammar to describe a constructive dynamical system (Fontana, 1992) or a rule-based system (Feret et al., 2009) in which it is not necessary to define all possible products in advance. We assume that G- and S-monomers and newly formed oligomers couple in a well-mixed medium, depending on coupling rules and experimentally measured coupling probabilities. To develop the model, we have used information from DHP experiments rather than natural lignins, as they are formed in a well-mixed medium and their reaction conditions are well known (e.g. the influx rate of monomers). Using information from natural lignin would have further complicated our model, as the structures of natural lignin polymers are influenced by many factors, including the possible involvement of dirigent proteins (Davin and Lewis, 2005), steric hindrance by polysaccharides, spatiotemporal regulation, and modifications during isolation procedures (Boerjan et al., 2003; Ralph et al., 2004).Using our simulation models, we study how putative controlling factors of lignin primary structure, including the influx rate of monomers and the relative amount of S-monomers, affect in silico lignin synthesis, and we compare our predictions with in vitro experiments. To predict the degradability of lignins formed in our simulations, we apply an in silico thioacidolysis, which cleaves the polymers at their β-O-4 positions. This simulates the molecular action of two of the most used methods to analyze lignin composition, thioacidolysis (Lapierre, 1993; Baucher et al., 2003) and derivatization followed by reductive cleavage (Lu and Ralph, 1997). The G+S-monomer yield is often taken as a reflection of the fraction of units bound by β-O-4 bonds. Cleavage of β-O-4 bonds is also the most important reaction in kraft pulping of wood (Baucher et al., 2003). The model predicts from first principles (1) that DHP lignins formed under Zutropf conditions have a higher β-O-4 content than those formed under Zulauf conditions, (2) that DHP lignins formed with high S content have a higher β-O-4 content than those formed with high G content, and (3) that a higher β-O-4 content does not necessarily reduce the average length of lignin fragments generated during in silico thioacidolysis.  相似文献   
83.
Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is a key insect pest of cotton in Xinjiang cotton-planting region of northwest China. In this region, cotton is grown on average ≈ 1.65 million ha (1.53 ≈ 1.80 million ha) annually in largely monoculture agricultural landscapes, similarly to cropping systems in the United States or Australia. Under such cropping regimes, naturally occurring refuges (with non-Bt crops) may be insufficient to prevent H. armigera resistance development to Bt toxins. Therefore, we assessed frequency of alleles conferring resistance to Cry1Ac toxin of F(1) and F(2) offspring of H. armigera isofemale lines from two distinct localities in the region during 2005-2009. More specifically, a total of 224 isofemale lines was collected from Korla County (≈ 70% Bt cotton adoption) and 402 lines from Shache County (≈ 5% Bt cotton planting). Subsequent offspring was screened on Cry1Ac artificial diet. From 2005 to 2009, resistance gene frequency in Korla fluctuated between 0.0000 and 0.0040, while being 0.0000-0.0008 in individuals collected from Shache, and there were no significant increases in both counties from 2005 to 2009. Relative average development rates (RADRs) of larvae in F(1) tests showed significant increases from Korla, but not in Shache. RADR of F(1) larvae is significantly correlated with RADR of F(2) offspring, indicating genetic variation in response to toxin in field H. armigera population. Although the occurrence of Cry1Ac resistance alleles was low in Xinjiang cotton-planting region of China, particular attention should be given to H. armigera resistance development in Korla County.  相似文献   
84.
In this article, I offer a review of the ethnographic research that reports the effects of current accountability policies on minority youth. Included in this article are qualitative investigations that have significant field-based components, most especially direct observations at the classroom level. In this article, I demonstrate both the power and potential of ethnography to offer clearer, more detailed portraits of the varied ways that current accountability policies affect teachers of minority youth, the curriculum and pedagogy that minority youth experience, minority youth in general, and the schooling of minority youth.  相似文献   
85.
Converting deciduous forests to coniferous plantations and vice versa causes environmental changes, but till now insight into the overall effect is lacking. This review, based on 38 case studies, aims to find out how coniferous and deciduous forests differ in terms of throughfall (+stemflow) deposition and seepage flux to groundwater. From the comparison of coniferous and deciduous stands at comparable sites, it can be inferred that deciduous forests receive less N and S via throughfall (+stemflow) deposition on the forest floor. In regions with relatively low open field deposition of atmospheric N (<10 kg N ha−1 year−1), lower NH4+ mean throughfall (+stemflow) deposition was, however, reported under conifers compared to deciduous forest, while in regions with high atmospheric N pollution (>10 kg N ha−1 year−1), the opposite could be concluded. The higher the open field deposition of NH4+, the bigger the difference between the coniferous and deciduous throughfall (+stemflow) deposition. Furthermore, it can be concluded that canopy exchange of K+, Ca2+ and Mg2+ is on average higher in deciduous stands. The significantly higher stand deposition flux of N and S in coniferous forests is reflected in a higher soil seepage flux of NO3, SO42−, K+, Ca2+, Mg2+ and Al(III). Considering a subset of papers for which all necessary data were available, a close relationship between throughfall (+stemflow) deposition and seepage was found for N, irrespective of the forest type, while this was not the case for S. This review shows that the higher input flux of N and S in coniferous forests clearly involves a higher seepage of NO3 and SO42− and accompanying cations K+, Ca2+, Mg2+ and Al(III) into the groundwater, making this forest type more vulnerable to acidification and eutrophication compared to the deciduous forest type.  相似文献   
86.
Developmental control of Arabidopsis seed oil biosynthesis   总被引:2,自引:0,他引:2  
Wang H  Guo J  Lambert KN  Lin Y 《Planta》2007,226(3):773-783
  相似文献   
87.
Here we report on a bovid postcranial ecomorphological survey of the fossil assemblages from the Plio-Pleistocene site of Laetoli, Tanzania. A global sample of extant bovids (n=205), cervids (n=14), and tragulids (n=5) from seven known habitat types constitutes the comparative data set. All long bones, carpals, tarsals, and phalanges were measured. Discriminant function analyses (DFA) were conducted in order to evaluate the ability of each element to accurately predict habitat affiliation. The baseline of chance accuracy for DFAs (i.e., the percentage of correct predictions that can be expected when habitat assignments are randomized) served as the cut-off point between good and bad habitat predictors. A total of 22 elements yielded percentages of correct classification over the baseline of accuracy, and these were extended to the Laetoli fossil assemblages. Summaries of the number of specimens predicted to belong to each habitat type were used to reconstruct the paleoenvironment. The results indicate that, at the time of the deposition of the Laetolil Beds, the area had heavy woodland-bushland cover with some lighter tree and bush cover and grass available. These results lend strong support to recent suggestions that the area was on the more wooded end of the habitat spectrum, contra initial conclusions that it represented a mosaic of more open habitats. The results also indicate that, during the deposition of the Ndolanya Beds, the environment had become more open and the grassland component of the environment had increased significantly. Light woodland-bushland and an abundance of grass cover dominated the landscape, although tracts of land with denser vegetation likely existed. This conclusion agrees with earlier suggestions that the area was a semiarid bushland.  相似文献   
88.
89.
Several computational methods based on stochastic context-free grammars have been developed for modeling and analyzing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNA, and are used for structural alignment of RNA sequences. However, such stochastic models cannot sufficiently discriminate member sequences of an RNA family from nonmembers and hence detect noncoding RNA regions from genome sequences. A novel kernel function, stem kernel, for the discrimination and detection of functional RNA sequences using support vector machines (SVMs) is proposed. The stem kernel is a natural extension of the string kernel, specifically the all-subsequences kernel, and is tailored to measure the similarity of two RNA sequences from the viewpoint of secondary structures. The stem kernel examines all possible common base pairs and stem structures of arbitrary lengths, including pseudoknots between two RNA sequences, and calculates the inner product of common stem structure counts. An efficient algorithm is developed to calculate the stem kernels based on dynamic programming. The stem kernels are then applied to discriminate members of an RNA family from nonmembers using SVMs. The study indicates that the discrimination ability of the stem kernel is strong compared with conventional methods. Furthermore, the potential application of the stem kernel is demonstrated by the detection of remotely homologous RNA families in terms of secondary structures. This is because the string kernel is proven to work for the remote homology detection of protein sequences. These experimental results have convinced us to apply the stem kernel in order to find novel RNA families from genome sequences.  相似文献   
90.
One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (~30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号