首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3552篇
  免费   251篇
  2021年   21篇
  2020年   12篇
  2019年   20篇
  2018年   34篇
  2017年   24篇
  2016年   44篇
  2015年   77篇
  2014年   70篇
  2013年   173篇
  2012年   141篇
  2011年   158篇
  2010年   102篇
  2009年   111篇
  2008年   171篇
  2007年   154篇
  2006年   172篇
  2005年   177篇
  2004年   171篇
  2003年   170篇
  2002年   188篇
  2001年   154篇
  2000年   155篇
  1999年   122篇
  1998年   55篇
  1997年   48篇
  1996年   38篇
  1995年   32篇
  1994年   41篇
  1993年   35篇
  1992年   80篇
  1991年   85篇
  1990年   73篇
  1989年   85篇
  1988年   73篇
  1987年   66篇
  1986年   71篇
  1985年   46篇
  1984年   46篇
  1983年   44篇
  1982年   30篇
  1981年   27篇
  1980年   28篇
  1979年   30篇
  1978年   17篇
  1977年   23篇
  1976年   21篇
  1975年   15篇
  1973年   9篇
  1972年   9篇
  1968年   10篇
排序方式: 共有3803条查询结果,搜索用时 78 毫秒
921.
Makomotindoline (1) was isolated from Makomotake, Zizania latifolia infected with Ustilago esculenta. The structure was determined by the interpretation of spectroscopic data and synthesis. Makomotindoline (1), its l-Glc isomer (2) and its aglycon (3) were synthesized and their effects on rat glioma cells showed adverse effects on the cell growth.  相似文献   
922.
Protein knockdown can be achieved by the use of a small molecule that possesses affinity for both the target protein and ubiquitin ligase. We have designed such a degradation-inducing molecule targeting cIAP1 and CRABP-II, which are involved in proliferation of several cancer cell lines and in neuroblastoma growth, respectively. As a CRABP-II-recognizing moiety, all-trans retinoic acid (ATRA, 3), a physiological ligand of CRABP, was chosen. As a cIAP1-recognizing moiety, MV1 (5), which is a cIAP1/cIAP2/XIAP pan-ligand, was chosen. Although cIAP1 itself possesses ubiquitin ligase activity, we expected that its decomposition would be efficiently mediated by related molecules, including cIAP2 and XIAP, which also possess ubiquitin ligase activity. The designed degradation inducer 6, in which ATRA (3) and MV1 (5) moieties are connected via a linker, was synthesized and confirmed to induce efficient degradation of both cIAP1 and CRABP-II. It showed potently inhibited the proliferation of IMR32 cells.  相似文献   
923.
Human heregulins are neuregulin-1 type I polypeptides that act as ligands of the ErbB family of receptor tyrosine kinases. These peptides play an essential role in the development of the cardiovascular system, including angiogenesis and compensation of cardiac function. Both heregulins and ErbB receptors are expressed at high levels in various types of vascular cells. The results of cell culture, animal, and clinical experiments have shown heregulin-β(1) to be a promising drug candidate for prevention of atherosclerosis. Various mechanisms have been suggested to be involved in this process, such as suppression of macrophage foam cell formation and vascular smooth muscle cell proliferation. Heregulin-β(1) retards pro-inflammatory responses by attenuating the expression of interleukin-1β, monocyte chemoattractant protein-1, intercellular adhesion molecule-1, matrix metalloproteinase-9, and cyclooxygenase-2 in monocytes. The peptide also has anti-oxidant and anti-apoptotic properties, and activates endothelial nitric oxide synthase in cardiomyocytes. Chronic infusion of heregulin-β(1) into apolipoprotein E-knockout mice suppresses the development of atherosclerotic lesions. In rat balloon injury models, heregulin-β(1) injection attenuates neointimal formation in the carotid artery. Clinical studies have shown that markedly reduced levels of heregulin-β(1) in the arterial wall and blood are closely associated with the progression of human coronary atherosclerotic lesions in patients with coronary artery disease. Therefore, these findings provide insight into the potential use of heregulin-β(1) as an extended therapeutic window for combating atherosclerosis and restenosis after coronary angioplasty.  相似文献   
924.
Lettuce tipburn is an irreversible physiological disorder caused by calcium deficiency that decreases the crop value. Breeding a tipburn-resistant cultivar is the only causal therapy in many cases. In this study, we investigated an efficient method to evaluate lettuce resistance to tipburn in vitro. Seedlings of 19 lettuce cultivars representing three head types were cultured on agar medium containing EGTA, which chelates Ca2+. The percentage of tipburned leaves decreased proportionally with EGTA concentration. Susceptible cultivars were distinguished at 0.01 mM EGTA, whereas resistant cultivars were classified at 1.0 mM EGTA. Based on mean values of tipburn measurements, tipburn susceptibility was highest for ‘Leaf Lettuce’, followed by ‘Butterhead Lettuce’, and then ‘Crisphead Lettuce’. Two cultivars were selected for further tests using hydroponic and pot culture. The rank order of susceptibility to tipburn in these experiments was consistent with that of the in vitro assay. The in vitro evaluation of lettuce susceptibility to calcium deficiency is useful for initial screening of lettuce cultivars against tipburn incidence. Resistant cultivars identified in this study are practical candidates for cultivation in controlled environments, such as a plant factory, while sensitive cultivars are also useful as indicator plants to monitor environmental conditions.  相似文献   
925.
926.
LPA (lysophosphatidic acid, 1-acyl-2-hydroxy-sn-glycero-3-phosphate), is a growth factor-like lipid mediator that regulates many cellular functions, many of which are unique to malignantly transformed cells. The simple chemical structure of LPA and its profound effects in cancer cells has attracted the attention of the cancer therapeutics field and drives the development of therapeutics based on the LPA scaffold. In biological fluids, LPA is generated by ATX (autotaxin), a lysophospholipase D that cleaves the choline/serine headgroup from lysophosphatidylcholine and lysophosphatidylserine to generate LPA. In the present article, we review some of the key findings that make the ATX-LPA signalling axis an emerging target for cancer therapy.  相似文献   
927.
Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD.  相似文献   
928.
Wnt signaling plays crucial roles in neural development. We previously identified Neucrin, a neural-specific secreted antagonist of canonical Wnt/β-catenin signaling, in humans and mice. Neucrin has one cysteine-rich domain, in which the positions of 10 cysteine residues are similar to those in the second cysteine-rich domain of Dickkopfs, secreted Wnt antagonists. Here, we have identified zebrafish neucrin to understand its roles in vivo. Zebrafish Neucrin also has one cysteine-rich domain, which is significantly similar to that of mouse Neucrin. Zebrafish neucrin was also predominantly expressed in developing neural tissues. To examine roles of neucrin in neural development, we analyzed neucrin knockdown embryos. Neural development in zebrafish embryos was impaired by the knockdown of neucrin. The knockdown of neucrin caused increased expression of the Wnt/β-catenin target genes. In contrast, overexpression of neucrin reduced the expression of the Wnt/β-catenin target genes. The knockdown of neucrin affected specification of dorsal region in the midbrain and hindbrain. The knockdown of neucrin also suppressed neuronal differentiation and caused increased cell proliferation and apoptosis in developing neural tissues. Neucrin is a unique secreted Wnt antagonist that is predominantly expressed in developing neural tissues and plays roles in neural development in zebrafish.  相似文献   
929.
930.
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of beta1,6-GlcNAc branching of N-glycans, which contributes to metastasis. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulting in the suppression of metastasis. It has long been hypothesized that the suppression of GnT-V product formation by the action of GnT-III would also exist in vivo, which will consequently lead to the inhibition of biological functions of GnT-V. To test this, we draw a comparison among MKN45 cells, which were transfected with GnT-III, GnT-V, or both, respectively. We found that alpha3beta1 integrin-mediated cell migration on laminin 5 was greatly enhanced in the case of GnT-V transfectant. This enhanced cell migration was significantly blocked after the introduction of GnT-III. Consistently, an increase in bisected GlcNAc but a decrease in beta1,6-GlcNAc-branched N-glycans on integrin alpha3 subunit was observed in the double transfectants of GnT-III and GnT-V. Conversely, GnT-III knockdown resulted in increased migration on laminin 5, concomitant with an increase in beta1,6-GlcNAc-branched N-glycans on the alpha3 subunit in CHP134 cells, a human neuroblastoma cell line. Therefore, in this study, the priority of GnT-III for the modification of the alpha3 subunit may be an explanation for why GnT-III inhibits GnT-V-induced cell migration. Taken together, our results demonstrate for the first time that GnT-III and GnT-V can competitively modify the same target glycoprotein and furthermore positively or negatively regulate its biological functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号