首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   15篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   2篇
  2015年   10篇
  2014年   10篇
  2013年   20篇
  2012年   23篇
  2011年   17篇
  2010年   8篇
  2009年   9篇
  2008年   21篇
  2007年   25篇
  2006年   8篇
  2005年   20篇
  2004年   8篇
  2003年   15篇
  2002年   18篇
  2001年   8篇
  2000年   12篇
  1999年   9篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
  1962年   2篇
  1929年   1篇
排序方式: 共有286条查询结果,搜索用时 187 毫秒
91.
Granule cells (GCs) in the mouse olfactory bulb (OB) continue to be generated in adulthood, with nearly half incorporated and the remainder eliminated. Here, we show that elimination of adult-born GCs is promoted during a short time window in the postprandial period. Under restricted feeding, the number of apoptotic GCs specifically increased within a few hours after the start of feeding. This enhanced GC apoptosis occurred in association with postprandial behaviors that included grooming, resting, and sleeping, and was particularly correlated with the length of postprandial sleep. Further, deprivation of olfactory sensory experience in the local OB area potentiated the extent of GC elimination in that area during the postprandial period. Sensory experience-dependent enhancement of GC elimination also occurred during postprandial period under natural feeding condition. These results suggest that extensive structural reorganization of bulbar circuitry occurs during the postprandial period, reflecting sensory experience during preceding waking period.  相似文献   
92.
To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ~40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4-bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.  相似文献   
93.
Viruses encode RNA silencing suppressors to counteract host antiviral silencing. In this study, we analyzed the suppressors encoded by potato virus M (PVM), a member of the genus Carlavirus. In the conventional green fluorescent protein transient coexpression assay, the cysteine-rich protein (CRP) of PVM inhibited both local and systemic silencing, whereas the triple gene block protein 1 (TGBp1) showed suppressor activity only on systemic silencing. Furthermore, to elucidate the roles of these two suppressors during an active viral infection, we performed PVX vector-based assays and viral movement complementation assays. CRP increased the accumulation of viral RNA at the single-cell level and also enhanced viral cell-to-cell movement by inhibiting RNA silencing. However, TGBp1 facilitated viral movement but did not affect viral accumulation in protoplasts. These data suggest that CRP inhibits RNA silencing primarily at the viral replication step, whereas TGBp1 is a suppressor that acts at the viral movement step. Thus, our findings demonstrate a sophisticated viral infection strategy that suppresses host antiviral silencing at two different steps via two mechanistically distinct suppressors. This study is also the first report of the RNA silencing suppressor in the genus Carlavirus.  相似文献   
94.
The most photosynthetically active leaves of rice seedlings were severely damaged when shoots but not roots were chilled (10°C/25°C, respectively), but no such injury was observed when the whole seedling was chilled (10°C/10°C). To elucidate the mechanisms, we compared the photosynthetic characteristics of the seedlings during the dark chilling treatments. Simultaneous analyses of Chl fluorescence and the change in absorbance of P700 showed that electron transport almost disappeared in both PSII and PSI in the 10°C/25°C leaves, whereas the electron transport rate in PSI in the 10°C/10°C leaves was similar to or higher than that in non-chilled control leaves. Light-induced non-photochemical quenching in PSII was inhibited in the 10°C/25°C leaves, occurring at only half the level in the 10°C/10°C leaves, whereas non-light-induced non-photochemical quenching remained high in the 10°C/25°C leaves. The light induction of Chl a fluorescence (OJIP curves) in the 10°C/25°C leaves was similar to that in leaves treated with DCMU. The fluorescence decay after a single turnover saturating flash in the 10°C/25°C leaves was much slower than in the 10°C/10°C leaves. In vivo analyses of the 550-515 nm difference signal indicated decreased formation of a proton gradient across the thylakoid membrane and decreased zeaxanthin formation in the 10°C/25°C leaves. Our results suggest that electron transport was blocked between Q(A) and Q(B) in the dark 10°C/25°C leaves, but without irreversible damage to the components of this system. The consequent light-dependent losses of electron transport, proton gradient formation across the thylakoids and thermal dissipation may therefore be responsible for the visible injury.  相似文献   
95.
Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers.  相似文献   
96.
Cofilin and its closely related protein, actin-depolymerizing factor (ADF), are key regulators of actin cytoskeleton dynamics that have been implicated in growth cone motility and neurite extension. Cofilin/ADF are inactivated by LIM kinase (LIMK)-catalyzed phosphorylation and reactivated by Slingshot (SSH)-catalyzed dephosphorylation. Here we examined the roles of cofilin/ADF, LIMKs (LIMK1 and LIMK2), and SSHs (SSH1 and SSH2) in nerve growth factor (NGF)-induced neurite extension. Knockdown of cofilin/ADF by RNA interference almost completely inhibited NGF-induced neurite extension from PC12 cells, and double knockdown of SSH1/SSH2 significantly suppressed both NGF-induced cofilin/ADF dephosphorylation and neurite extension from PC12 cells, thus indicating that cofilin/ADF and their activating phosphatases SSH1/SSH2 are critical for neurite extension. Interestingly, NGF stimulated the activities of both LIMK1 and LIMK2 in PC12 cells, and suppression of LIMK1/LIMK2 expression or activity significantly reduced NGF-induced neurite extension from PC12 cells or chick dorsal root ganglion (DRG) neurons. Inhibition of LIMK1/LIMK2 activity reduced actin filament assembly in the peripheral region of the growth cone of chick DRG neurons. These results suggest that proper regulation of cofilin/ADF activities through control of phosphorylation by LIMKs and SSHs is critical for neurite extension and that LIMKs regulate actin filament assembly at the tip of the growth cone.  相似文献   
97.
Tumor suppressor Lats2 is a member of the conserved Dbf2 kinase family. It localizes to the centrosome and has been implicated in regulation of the cell cycle and apoptosis. However, the in vivo function of this kinase remains unclear. Here, we show that complete disruption of the gene encoding Lats2 in mice causes developmental defects in the nervous system and embryonic lethality. Furthermore, mutant cells derived from total LATS2-knock-out embryos exhibit mitotic defects including centrosome fragmentation and cytokinesis defects, followed by nuclear enlargement and multinucleation. We show that the Mob1 family, a regulator of mitotic exit, associates with Lats2 to induce its activation. We also show that the complete LATS2-knock-out cells exhibit an acceleration of exit from mitosis and marked down-regulation of critical mitotic regulators. These results suggest that Lats2 plays an essential mitotic role in coordinating accurate cytokinesis completion, governing the stabilization of other mitotic regulators.  相似文献   
98.
Subacute sclerosing panencephalitis (SSPE) is a fatal neurodegenerative disease caused by prolonged persistent infection of the central nervous system with a measles virus (MV) mutant called SSPE virus. At present, there is no effective treatment to completely cure SSPE and development of a new therapeutic measure(s) against this fatal slow virus infection is needed. We previously reported that replication of MV and SSPE virus was effectively inhibited by small interfering RNA (siRNA), either chemically synthetic or plasmid-driven ones, that were targeted against different sequences of the mRNA for the L protein of MV. In this study, we have generated recombinant adenovirus expressing the siRNAs (rAd-siRNA-MV-L2, -L4 and -L5) and demonstrated that these rAd-siRNAs efficiently inhibited replication of MV and SSPE virus in a dose-dependent manner. Due to their high capacity for gene delivery to nerve cells and the potential to inhibit SSPE virus replication, the rAd-siRNAs could be a good candidate for a novel therapeutic measure against SSPE.  相似文献   
99.
The activity state of cofilin, which controls actin dynamics, is driven by a phosphorylation-dephosphorylation cycle. Phosphorylation of cofilin by LIM-kinases results in its inactivation, a process supported by 14-3-3zeta and reversed by dephosphorylation by slingshot phosphatases. Here we report on a novel cellular function for the phosphorylation-dephosphorylation cycle of cofilin. We demonstrate that muscarinic receptor-mediated stimulation of phospholipase D1 (PLD1) is controlled by LIM-kinase, slingshot phosphatase as well as 14-3-3zeta, and requires phosphorylatable cofilin. Cofilin directly and specifically interacts with PLD1 and upon phosphorylation by LIM-kinase1, stimulates PLD1 activity, an effect mimicked by phosphorylation-mimic cofilin mutants. The interaction of cofilin with PLD1 is under receptor control and encompasses a PLD1-specific fragment (aa 585-712). Expression of this fragment suppresses receptor-induced cofilin-PLD1 interaction as well as PLD stimulation and actin stress fiber formation. These data indicate that till now designated inactive phospho-cofilin exhibits an active cellular function, and suggest that phospho-cofilin by its stimulatory effect on PLD1 may control a large variety of cellular functions.  相似文献   
100.
A gutless polychaete of the family Siboglinidae, Oligobrachia mashikoi, known in the past as a beard worm of the group Pogonophora, inhabits Tsukumo Bay of the Noto Peninsula in the Sea of Japan. Photographs were taken of this polychaete projecting about one third of the length of its tentacles outside of its tube. The tube protruded several mm from the sea bottom. These are the first field photographs of beard worms. The trophosome of this beard worm harbors sulfur-oxidizing bacteria. In fact, the muddy sediment where this worm inhabits smells slightly of hydrogen sulfide. Total sulfide levels, which can be an indicator of the generation of hydrogen sulfide gas, were measured at 10 locations in the bay. Furthermore, at the location which this species inhabits, the total sulfide levels in the vertical direction were determined. In addition, the total nitrogen levels, which can indicate the quantity of organic substances, were measured. The sediment inhabited by this worm was determined to have total sulfide levels of 0.24-0.39 mg/g dry mud, measured in the form of acid-volatile sulfide-sulfur. The total nitrogen levels were 1.0-1.5 microg/mg dry mud. These values suggest that the bottom of Tsukumo Bay has not been deteriorated by eutrophication. The levels were, however, highest in the surface layer of the sediment. These results suggest that hydrogen sulfide is generated in the surface of the sediment by sulfate-reducing bacteria, and that O. mashikoi appears to able to live in an environment that contains a slight amount of sulfide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号