首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1481篇
  免费   42篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   14篇
  2016年   16篇
  2015年   34篇
  2014年   57篇
  2013年   111篇
  2012年   75篇
  2011年   76篇
  2010年   51篇
  2009年   65篇
  2008年   99篇
  2007年   83篇
  2006年   107篇
  2005年   87篇
  2004年   92篇
  2003年   108篇
  2002年   125篇
  2001年   9篇
  2000年   12篇
  1999年   25篇
  1998年   34篇
  1997年   31篇
  1996年   14篇
  1995年   18篇
  1994年   24篇
  1993年   19篇
  1992年   11篇
  1991年   16篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1986年   7篇
  1985年   5篇
  1984年   13篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1975年   1篇
  1972年   3篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1964年   2篇
排序方式: 共有1523条查询结果,搜索用时 234 毫秒
41.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
42.
Here we attempted to clarify telomere metabolism in parental cells and their derived clonal human induced pluripotent stem cells (iPSCs) at different passages using quantitative fluorescence in situ hybridization (Q-FISH). Our methodology involved estimation of the individual telomere lengths of chromosomal arms in individual cells within each clone in relation to telomere fluorescence units (TFUs) determined by Q-FISH. TFUs were very variable within the same metaphase spread and within the same cell. TFUs of the established iPSCs derived from human amnion (hAM933 iPSCs), expressed as mean values of the median TFUs of 20 karyotypes, were significantly longer than those of the parental cells, although the telomere extension rates varied quite significantly among the clones. Twenty metaphase spreads from hAM933 iPSCs demonstrated no chromosomal instability. The iPSCs established from fetal lung fibroblasts (MRC-5) did not exhibit telomere shortening and chromosomal instability as the number of passages increased. However, the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased, and one (5%) of 20 metaphase spreads showed chromosomal abnormalities including X trisomy at an early stage and all 20 showed abnormalities including X and 12 trisomies at the late stage.  相似文献   
43.
Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs.  相似文献   
44.
We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics.  相似文献   
45.
Wild-derived rat strains can provide novel genome resources that are not available in standard laboratory strains. Genetic backgrounds of wild-derived strains can facilitate effective genetic linkage analyses and often modulate the expression of mutant phenotypes. Here we describe the development and characterization of a new inbred rat strain, DOB/Oda, from wild rats (Rattus norvegicus) captured in Shitara, Aichi, Japan. Phenotype analysis of 109 parameters revealed that the DOB/Oda rats had small body weight, preference for darkness, and high locomotor activity compared with the rat strains in the National BioResource Project for the Rat (NBRP-Rat) database. Genome analysis with 357 SSLP markers identified DOB/Oda-specific alleles in 70 markers. The percentage of SSLP markers that showed polymorphism between the DOB/Oda strain and any of 132 laboratory strains from NBRP-Rat varied from 89 to 95 %. The polymorphic rate (average of the values of the percentage) for the DOB/Oda strain was 91.6 %, much higher than the rates for available wild-derived strains such as the Brown Norway rat. A phylogenic tree constructed with DOB/Oda and all the strains in NBRP-Rat showed that the DOB/Oda strain localized within the wild rat groups, apparently separate from the laboratory strains. Together, these findings indicated that the DOB/Oda rat has a unique genome that is not available in the laboratory strains. Therefore, the new DOB/Oda strain will provide an important genome resource that will be useful for designing genetic experiments and for the discovery of genes that modulate mutant phenotypes.  相似文献   
46.
The amino acid residue(s) involved in the activity of buckwheat α-glucosidase was modified by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide in the presence of glycine ethyl ester. The modification resulted in the decrease in the hydrolytic activity of the enzyme following pseudo-first order kinetics. Competitive inhibitors, such as Tris and turanose, protected the enzyme against the inactivation. Protection was provided also by alkali metal, alkaline-earth metal and ammonium ions, though these cations are non-essential for the activity of the enzyme. Turanose or K+ protected one carboxyl group per enzyme from the modification with carbodiimide and glycine ethyl ester. Free sulfhydryl group of the enzyme was also partially modified with carbodiimide, but the inactivation was considered to be mainly attributed to the modification of essential carboxyl group rather than to that of free sulfhydryl group.  相似文献   
47.
A treatment of buckwheat α-glucosidase with N-acetylimidazole brought about the acétylation of 6.4 tyrosyl residues, 0.38 free sulfhydryl groups and about 50% of free amino groups, and the decrease in the hydrolytic activities toward maltooligosaccharides (G2~G8, G13) and soluble starch. The affinities for the substrate other than maltose were diminished by the modification and the extent of the reduction of the affinities was apparently dependent on the degree of polymerization of maltooligosaccharides, while the affinity for phenyl α- maltoside was increased. The treatment of the acetylated enzyme with hydroxylamine resulted in the complete restration of the affinities for all substrates tested. It seems that these facts were due to the acétylation of several tyrosyl residues located in or near certain subsites of the enzyme. About 25 % of the hydrolytic activity remained inert in spite of the deacetylation with hydroxylamine, which was assumed to be attributed to the partial modification of free sulfhydryl group localized closely near the catalytic site of the enzyme.  相似文献   
48.
Screening test for obtaining growth stimulant (GS) produced by a hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa S7B1, was carried out. In consequence, the anthrone positive substance was most effective on the growth of this strain. Although the growth of this strain on glucose medium had no relation with the addition of GS, the growth on n-hexadecane medium was remarkably stimulated by the addition of GS. This effect of GS seemed to be specific on the growth of P. aeruginosa. GS which had a strong surface activity and emulsifying power was comfirmed to be rhamnolipid.  相似文献   
49.
50.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号