首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   464篇
  免费   46篇
  2022年   6篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   20篇
  2013年   20篇
  2012年   34篇
  2011年   28篇
  2010年   17篇
  2009年   16篇
  2008年   27篇
  2007年   26篇
  2006年   24篇
  2005年   30篇
  2004年   12篇
  2003年   9篇
  2002年   9篇
  2001年   11篇
  2000年   9篇
  1999年   7篇
  1998年   10篇
  1996年   3篇
  1995年   3篇
  1993年   3篇
  1992年   9篇
  1991年   6篇
  1990年   11篇
  1988年   12篇
  1987年   5篇
  1986年   10篇
  1985年   8篇
  1984年   5篇
  1983年   6篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1975年   5篇
  1973年   3篇
  1972年   2篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
  1963年   2篇
  1950年   2篇
排序方式: 共有510条查询结果,搜索用时 609 毫秒
51.
52.
This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR), principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks (ANN). The pathway of mammalian gluconeogenesis was analyzed using [U−13C]glucose as tracer. A set of data was simulated by randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior, capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the underlying physiology is complex or unknown.We acknowledge the support of NIH Grant DK58533 and the DuPont-MIT Alliance.  相似文献   
53.
Mutations that allow escape from CD8 T-cell responses are common in HIV-1 and may attenuate pathogenesis by reducing viral fitness. While this has been demonstrated for individual cases, a systematic investigation of the consequence of HLA class I-mediated selection on HIV-1 in vitro replication capacity (RC) has not been undertaken. We examined this question by generating recombinant viruses expressing plasma HIV-1 RNA-derived Gag-Protease sequences from 66 acute/early and 803 chronic untreated subtype B-infected individuals in an NL4-3 background and measuring their RCs using a green fluorescent protein (GFP) reporter CD4 T-cell assay. In acute/early infection, viruses derived from individuals expressing the protective alleles HLA-B*57, -B*5801, and/or -B*13 displayed significantly lower RCs than did viruses from individuals lacking these alleles (P < 0.05). Furthermore, acute/early RC inversely correlated with the presence of HLA-B-associated Gag polymorphisms (R = −0.27; P = 0.03), suggesting a cumulative effect of primary escape mutations on fitness during the first months of infection. At the chronic stage of infection, no strong correlations were observed between RC and protective HLA-B alleles or with the presence of HLA-B-associated polymorphisms restricted by protective alleles despite increased statistical power to detect these associations. However, RC correlated positively with the presence of known compensatory mutations in chronic viruses from B*57-expressing individuals harboring the Gag T242N mutation (n = 50; R = 0.36; P = 0.01), suggesting that the rescue of fitness defects occurred through mutations at secondary sites. Additional mutations in Gag that may modulate the impact of the T242N mutation on RC were identified. A modest inverse correlation was observed between RC and CD4 cell count in chronic infection (R = −0.17; P < 0.0001), suggesting that Gag-Protease RC could increase over the disease course. Notably, this association was stronger for individuals who expressed B*57, B*58, or B*13 (R = −0.27; P = 0.004). Taken together, these data indicate that certain protective HLA alleles contribute to early defects in HIV-1 fitness through the selection of detrimental mutations in Gag; however, these effects wane as compensatory mutations accumulate in chronic infection. The long-term control of HIV-1 in some persons who express protective alleles suggests that early fitness hits may provide lasting benefits.The host immune response elicited by CD8+ cytotoxic T lymphocytes (CTLs) is a major contributor to viral control following human immunodeficiency virus type 1 (HIV-1) infection (6, 39), but antiviral pressure exerted by CTLs is diminished by the selection of escape mutations in targeted regions throughout the viral proteome (7, 18, 29, 35, 41, 45, 57). A comprehensive identification of HLA-associated viral polymorphisms has recently been achieved through population-based analyses of HIV-1 sequences and HLA class I types from different cohorts worldwide (3, 8, 13-15, 34, 43, 50, 56, 63). However, despite improved characterization of the sites and pathways of immune escape, effective ways to incorporate these findings into immunogen design remain an area of debate. A better understanding of the impact of escape mutations on viral fitness may provide novel directions for HIV-1 vaccines that are designed to attenuate pathogenesis.The development of innovative vaccine strategies that can overcome the extreme diversity of HIV is a key priority (4). One proposed approach is to target the most conserved T-cell epitopes, which presumably cannot escape from CTL pressure easily due to structural or functional constraints on the viral protein (55). Complementary approaches include the design of polyvalent and/or mosaic immunogens that incorporate commonly observed viral diversity (4, 38) or the specific targeting of vulnerable regions of the viral proteome that do escape but only at a substantial cost to viral replication capacity (RC) (1, 40). A chief target of such vaccine approaches is the major HIV-1 structural protein Gag, which is known to be highly immunogenic and to elicit CTL responses that correlate with the natural control of infection (22, 36, 66). Indeed, several lines of evidence support a relationship between the selection of CTL escape mutations and reduced HIV-1 fitness. These include the reversion of escape mutations following transmission to an HLA-mismatched recipient who cannot target the epitope (19, 24, 41) as well as reduced plasma viral load (pVL) set point following the transmission of certain escape variants from donors who expressed protective HLA alleles (17, 27). Notably, these in vivo observations have been made most often for variations within Gag that are attributed to CTL responses restricted by the protective alleles HLA-B*57 and -B*5801 (17, 19, 27, 41). Most recently, reduced in vitro RCs of clinical isolates and/or engineered strains encoding single or multiple escape mutations in Gag selected in the context of certain protective HLA alleles, including B*57, B*5801, B*27, and B*13, have been demonstrated (9, 10, 42, 53, 59, 62). Despite these efforts, the goal of a T-cell vaccine that targets highly conserved and attenuation-inducing sites is hampered by a lack of knowledge concerning the contribution of most escape mutations to HIV-1 fitness as well as a poor understanding of the relative influence of HLA on the viral RC at different stages of infection.The mutability of HIV-1 permits the generation of progeny viruses encoding compensatory mutations that restore normal protein function and/or viral fitness. Detailed studies have demonstrated that the in vitro RC of escape variants in human and primate immunodeficiency viruses can be enhanced by the addition of secondary mutations outside the targeted epitope (10, 20, 52, 59, 65). Thus, vaccine strategies aimed at attenuating HIV-1 must also consider, among other factors, the frequency, time course, and extent to which compensation might overcome attenuation mediated by CTL-induced escape. Despite its anticipated utility for HIV-1 vaccine design, systematic studies to examine the consequences of naturally occurring CTL escape and compensatory mutations on viral RC have not been undertaken.We have described previously an in vitro recombinant viral assay to examine the impact of Gag-Protease mutations on HIV-1 RC (47, 49). Gag and protease have been included in each virus to minimize the impact of sequence polymorphisms at Gag cleavage sites, which coevolve with changes in protease (5, 37). Using this approach, we have demonstrated that viruses derived from HIV-1 controllers replicated significantly less well than those derived from noncontrollers and that these differences were detectable at both the acute/early (49) and chronic (47) stages. Escape mutations in Gag associated with the protective HLA-B*57 allele, as well as putative compensatory mutations outside known CTL epitopes, contributed to this difference in RC (47). However, substantial variability was observed for viruses from controllers and noncontrollers, indicating that additional factors were likely to be involved. Benefits of this assay include its relatively high-throughput capacity as well as the fact that clinically derived HIV-1 sequences are used in their entirety. Thus, it is possible to examine a large number of “real-world” Gag-Protease sequences, to define an RC value for each one, and to identify sequences within the population of recombinant strains that are responsible for RC differences.Here, we use this recombinant virus approach to examine the contribution of HLA-associated immune pressure on Gag-Protease RC during acute/early (n = 66) and chronic (n = 803) infections in the context of naturally occurring HIV-1 subtype B isolates from untreated individuals. In a recent report (64), we employed this system to examine the Gag-Protease RC in a similar cohort of chronic HIV-1 subtype C-infected individuals. The results of these studies provide important insights into the roles of immune pressure and fitness constraints on HIV-1 evolution that may contribute to the rational design of an effective vaccine.  相似文献   
54.
Cell reprogramming from a quiescent to proliferative state requires coordinate activation of multiple -omic networks. These networks activate histones, increase cellular bioenergetics and the synthesis of macromolecules required for cell proliferation. However, mechanisms that coordinate the regulation of these interconnected networks are not fully understood. The oncogene c-Myc (Myc) activates cellular metabolism and global chromatin remodeling. Here we tested for an interconnection between Myc regulation of metabolism and acetylation of histones. Using [13C6]glucose and a combination of GC/MS and LC/ESI tandem mass spectrometry, we determined the fractional incorporation of 13C-labeled 2-carbon fragments into the fatty acid palmitate, and acetyl-lysines at the N-terminal tail of histone H4 in myc−/− and myc+/+ Rat1A fibroblasts. Our data demonstrate that Myc increases mitochondrial synthesis of acetyl-CoA, as the de novo synthesis of 13C-labeled palmitate was increased 2-fold in Myc-expressing cells. Additionally, Myc induced a forty percent increase in 13C-labeled acetyl-CoA on H4-K16. This is linked to the capacity of Myc to increase mitochondrial production of acetyl-CoA, as we show that mitochondria provide 50% of the acetyl groups on H4-K16. These data point to a key role for Myc in directing the interconnection of -omic networks, and in particular, epigenetic modification of proteins in response to proliferative signals.  相似文献   
55.
Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.  相似文献   
56.
For screening a pool of potential substrates that load carrier domains found in nonribosomal peptide synthetases, large molecule mass spectrometry is shown to be a new, unbiased assay. Combining the high resolving power of Fourier transform mass spectrometry with the ability of adenylation domains to select their own substrates, the mass change that takes place upon formation of a covalent intermediate thus identifies the substrate. This assay has an advantage over traditional radiochemical assays in that many substrates, the substrate pool, can be screened simultaneously. Using proteins on the nikkomycin, clorobiocin, coumermycin A1, yersiniabactin, pyochelin, and enterobactin biosynthetic pathways as proof of principle, preferred substrates are readily identified from substrate pools. Furthermore, this assay can be used to provide insight into the timing of tailoring events of biosynthetic pathways as demonstrated using the bromination reaction found on the jamaicamide biosynthetic pathway. Finally, this assay can provide insight into the role and function of orphan gene clusters for which the encoded natural product is unknown. This is demonstrated by identifying the substrates for two NRPS modules from the pksN and pksJ genes that are found on an orphan NRPS/PKS hybrid cluster from Bacillus subtilis. This new assay format is especially timely for activity screening in an era when new types of thiotemplate assembly lines that defy classification are being discovered at an accelerating rate.  相似文献   
57.
Long-term memory and its putative synaptic correlates the late phases of both long-term potentiation and long-term depression require enhanced protein synthesis. On the basis of recent data on translation-dependent synaptic plasticity and on the supralinear effect of activation of nearby synapses on action potential generation, we propose a model for the formation of long-term memory engrams at the single neuron level. In this model, which we call clustered plasticity, local translational enhancement, along with synaptic tagging and capture, facilitates the formation of long-term memory engrams through bidirectional synaptic weight changes among synapses within a dendritic branch.  相似文献   
58.
59.
Chemokines such as SDF-1α play a crucial role in orchestrating T lymphocyte polarity and migration via polymerization and reorganization of the F-actin cytoskeleton, but the role of actin-associated proteins in this process is not well characterized. In this study, we have investigated a role for L-plastin, a leukocyte-specific F-actin-bundling protein, in SDF-1α-stimulated human T lymphocyte polarization and migration. We found that L-plastin colocalized with F-actin at the leading edge of SDF-1α-stimulated T lymphocytes and was also phosphorylated at Ser(5), a site that when phosphorylated regulates the ability of L-plastin to bundle F-actin. L-plastin phosphorylation was sensitive to pharmacological inhibitors of protein kinase C (PKC), and several PKC isoforms colocalized with L-plastin at the leading edge of SDF-1α-stimulated lymphocytes. However, PKC ζ, an established regulator of cell polarity, was the only isoform that regulated L-plastin phosphorylation. Knockdown of L-plastin expression with small interfering RNAs demonstrated that this protein regulated the localization of F-actin at the leading edge of chemokine-stimulated cells and was also required for polarization, lamellipodia formation, and chemotaxis. Knockdown of L-plastin expression also impaired the Rac1 activation cycle and Akt phosphorylation in response to SDF-1α stimulation. Furthermore, L-plastin also regulated SDF-1α-mediated lymphocyte migration on the integrin ligand ICAM-1 by influencing velocity and persistence, but in a manner that was independent of LFA-1 integrin activation or adhesion. This study, therefore, demonstrates an important role for L-plastin and the signaling pathways that regulate its phosphorylation in response to chemokines and adds L-plastin to a growing list of proteins implicated in T lymphocyte polarity and migration.  相似文献   
60.
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号