首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   32篇
  2022年   3篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   11篇
  2014年   9篇
  2013年   14篇
  2012年   15篇
  2011年   22篇
  2010年   11篇
  2009年   12篇
  2008年   13篇
  2007年   26篇
  2006年   10篇
  2005年   8篇
  2004年   15篇
  2003年   5篇
  2002年   8篇
  2001年   8篇
  2000年   5篇
  1999年   11篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1964年   1篇
排序方式: 共有288条查询结果,搜索用时 968 毫秒
151.
We examined 154 Norwegian B. cereus and B. thuringiensis soil isolates (collected from five different locations), 8 B. cereus and 2 B. thuringiensis reference strains, and 2 Bacillus anthracis strains by using fluorescent amplified fragment length polymorphism (AFLP). We employed a novel fragment identification approach based on a hierarchical agglomerative clustering routine that identifies fragments in an automated fashion. No method is free of error, and we identified the major sources so that experiments can be designed to minimize its effect. Phylogenetic analysis of the fluorescent AFLP results reveals five genetic groups in these group 1 bacilli. The ATCC reference strains were restricted to two of the genetic groups, clearly not representative of the diversity in these bacteria. Both B. anthracis strains analyzed were closely related and affiliated with a B. cereus milk isolate (ATCC 4342) and a B. cereus human pathogenic strain (periodontitis). Across the entire study, pathogenic strains, including B. anthracis, were more closely related to one another than to the environmental isolates. Eight strains representing the five distinct phylogenetic clusters were further analyzed by comparison of their 16S rRNA gene sequences to confirm the phylogenetic status of these groups. This analysis was consistent with the AFLP analysis, although of much lower resolution. The innovation of automated genotype analysis by using a replicated and statistical approach to fragment identification will allow very large sample analyses in the future.  相似文献   
152.
Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later-generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment-dependent reduction in hybrid fitness.  相似文献   
153.
The three species of the group 1 bacilli, Bacillus anthracis, B. cereus, and B. thuringiensis, are genetically very closely related. All inhabit soil habitats but exhibit different phenotypes. B. anthracis is the causative agent of anthrax and is phylogenetically monomorphic, while B. cereus and B. thuringiensis are genetically more diverse. An amplified fragment length polymorphism analysis described here demonstrates genetic diversity among a collection of non-anthrax-causing Bacillus species, some of which show significant similarity to B. anthracis. Suppression subtractive hybridization was then used to characterize the genomic differences that distinguish three of the non-anthrax-causing bacilli from B. anthracis Ames. Ninety-three DNA sequences that were present in B. anthracis but absent from the non-anthrax-causing Bacillus genomes were isolated. Furthermore, 28 of these sequences were not found in a collection of 10 non-anthrax-causing Bacillus species but were present in all members of a representative collection of B. anthracis strains. These sequences map to distinct loci on the B. anthracis genome and can be assayed simultaneously in multiplex PCR assays for rapid and highly specific DNA-based detection of B. anthracis.  相似文献   
154.
Magnetotactic multicellular aggregates and many-celled magnetotactic prokaryotes have been described as spherical organisms composed of several Gram-negative bacteria capable to align themselves along magnetic fields and swim as a unit. Here we describe a similar organism collected in a large hypersaline lagoon in Brazil. Ultrathin sections and freeze fracture replicas showed that the cells are arranged side by side and face both the external environment and an internal acellular compartment in the center of the organism. This compartment contains a belt of filaments linking the cells, and numerous membrane vesicles. The shape of the cells approaches a pyramid, with the apex pointing to the internal compartment, and the basis facing the external environment. The contact region of two cells is flat and represents the pyramid faces, while the contacts of three or more cells contain cell projections and represent the edges. Freeze-fracture replicas showed a high concentration of intramembrane particles on the edges and also in the region of the outer membrane that faces the external environment. Dark field optical microscopy showed that the whole organism performs a coordinated movement with either straight or helicoidal trajectories. We conclude that the organisms described in this work are, in fact, highly organized prokaryotic multicellular organisms.  相似文献   
155.
156.
Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.  相似文献   
157.
With the emerging field of community genetics, it is important to quantify the key mechanisms that link genetics and community structure. We studied cottonwoods in common gardens and in natural stands and examined the potential for plant chemistry to be a primary mechanism linking plant genetics and arthropod communities. If plant chemistry drives the relationship between plant genetics and arthropod community structure, then several predictions followed. We would find (i) the strongest correlation between plant genetic composition and chemical composition; (ii) an intermediate correlation between plant chemical composition and arthropod community composition; and (iii) the weakest relationship between plant genetic composition and arthropod community composition. Our results supported our first prediction: plant genetics and chemistry had the strongest correlation in the common garden and the wild. Our results largely supported our second prediction, but varied across space, seasonally, and according to arthropod feeding group. Plant chemistry played a larger role in structuring common garden arthropod communities relative to wild communities, free-living arthropods relative to leaf and stem modifiers, and early-season relative to late-season arthropods. Our results did not support our last prediction, as host plant genetics was at least as tightly linked to arthropod community structure as plant chemistry, if not more so. Our results demonstrate the consistency of the relationship between plant genetics and biodiversity. Additionally, plant chemistry can be an important mechanism by which plant genetics affects arthropod community composition, but other genetic-based factors are likely involved that remain to be measured.  相似文献   
158.
159.
AIM: Evaluation of the Escherichia coli genome for variable number tandem repeat (VNTR) loci in order to provide a subtyping tool with greater discrimination and more efficient capacity. METHODS AND RESULTS: Twenty-nine putative VNTR loci were identified from the E. coli genomic sequence. Their variability was validated by characterizing the number of repeats at each locus in a set of 56 E. coli O157:H7/HN and O55:H7 isolates. An optimized multiplex assay system was developed to facility high capacity analysis. Locus diversity values ranged from 0.23 to 0.95 while the number of alleles ranged from two to 29. This multiple-locus VNTR analysis (MLVA) data was used to describe genetic relationships among these isolates and was compared with PFGE (pulse field gel electrophoresis) data from a subset of the same strains. Genetic similarity values were highly correlated between the two approaches, through MLVA was capable of discrimination amongst closely related isolates when PFGE similar values were equal to 1.0. CONCLUSIONS: Highly variable VNTR loci exist in the E. coli O157:H7 genome and are excellent estimators of genetic relationships, in particular for closely related isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: Escherichia coli O157:H7 MLVA offers a complimentary analysis to the more traditional PFGE approach. Application of MLVA to an outbreak cluster could generate superior molecular epidemiology and result in a more effective public health response.  相似文献   
160.
Genetic variation in dominant species can affect plant and ecosystem functions in natural systems through multiple pathways. Our study focuses on how genetic variation in a dominant riparian tree (Populus fremontii, P. angustifolia and their natural F1 and backcross hybrids) affects whole-tree water use, and its potential ecosystem implications. Three major patterns were found. First, in a 12-year-old common garden with trees of known genetic makeup, hybrids had elevated daily integrated leaf-specific transpiration (Etl ; P=0.013) and average canopy conductance (Gc ; P=0.037), with both Etl and Gc ~30% higher in hybrid cross types than parental types. Second, 13C values of leaves from these same trees were significantly more negative in hybrids (P=0.004), and backcross hybrids had significantly more negative values than all other F1 hybrid and parental types (P <0.001). Third, in the wild, a similar pattern was found in leaf 13C values where both hybrid cross types had the lowest values (P <0.001) and backcross hybrids had lower 13C values than any other tree type (P <0.001). Our findings have two important implications: (1) the existence of a consistent genetic difference in whole-tree physiology suggests that whole-tree gas and water exchange could be another pathway through which genes could affect ecosystems; and (2) such studies are important because they seek to quantify the genetic variation that exists in basic physiological processes—such knowledge could ultimately place ecosystem studies within a genetic framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号