首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1411篇
  免费   97篇
  2021年   11篇
  2020年   5篇
  2019年   9篇
  2018年   16篇
  2017年   10篇
  2016年   30篇
  2015年   60篇
  2014年   56篇
  2013年   126篇
  2012年   97篇
  2011年   92篇
  2010年   48篇
  2009年   55篇
  2008年   86篇
  2007年   91篇
  2006年   93篇
  2005年   71篇
  2004年   63篇
  2003年   85篇
  2002年   78篇
  2001年   24篇
  2000年   19篇
  1999年   16篇
  1998年   20篇
  1997年   13篇
  1996年   16篇
  1995年   17篇
  1994年   9篇
  1993年   18篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   15篇
  1988年   8篇
  1987年   4篇
  1986年   11篇
  1985年   9篇
  1984年   13篇
  1983年   12篇
  1982年   4篇
  1981年   4篇
  1979年   11篇
  1978年   5篇
  1977年   6篇
  1976年   4篇
  1975年   4篇
  1973年   6篇
  1966年   3篇
  1965年   5篇
  1959年   4篇
排序方式: 共有1508条查询结果,搜索用时 234 毫秒
71.
The effect of phenolic compounds on hydrothermal oxidation of cellulose was studied using a batch reactor at 300 degrees C with H(2)O(2) as oxidant. Intermediate products, as well as the yields of acetic acid produced in the oxidation of cellulose, phenolic compounds, and cellulose-phenolic compound mixtures were examined. Phenolic compounds used were phenol, 1,4-benzenediol, 2-methoxy-4-methylphenol, and 2,6-di-tert-butyl-4-methylphenol. In the case of oxidation of cellulose-phenolic compound mixtures, (1) formic acid, a basic oxidation product from carbohydrates, decreased considerably, (2) 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde, acid-catalyzed dehydration products from carbohydrates, appeared, and (3) the yield of acetic acid increased compared to that in the oxidation of cellulose. From these results, phenolic compounds seem to inhibit the oxidation of cellulose under hydrothermal conditions. The inhibition of the oxidation of cellulose by phenolic compounds seems to be related closer to the stability of phenolic compounds under oxidation conditions rather than the ease to remove phenolic hydrogen on the OH group.  相似文献   
72.
Masada S  Terasaka K  Mizukami H 《FEBS letters》2007,581(14):2605-2610
Curcumin glucosyltransferase (CaUGT2) isolated from cell cultures of Catharanthus roseus exhibits unique substrate specificity. To identify amino acids involved in substrate recognition and catalytic activity of CaUGT2, a combination of domain swapping and site-directed mutagenesis was carried out. Exchange of the PSPG-box of CaUGT2 with that of NtGT1b (a phenolic glucosyltransferase from tobacco) led to complete loss of enzyme activity in the resulting recombinant protein. However, replacement of Arg378 of the NtGT1b PSPG-box with cysteine, the corresponding amino acid in CaUGT2, restored the catalytic activity of the chimeric enzyme. Further site-directed mutagenesis revealed that the size of the amino acid side-chain in that particular site is critical to the catalytic activity of CaUGT2.  相似文献   
73.
Inoue J  Saita K  Kudo T  Ui S  Ohkuma M 《Eukaryotic cell》2007,6(10):1925-1932
Cellulolytic flagellated protists in the guts of termites produce molecular hydrogen (H(2)) that is emitted by the termites; however, little is known about the physiology and biochemistry of H(2) production from cellulose in the gut symbiotic protists due to their formidable unculturability. In order to understand the molecular basis for H(2) production, we here identified two genes encoding proteins homologous to iron-only hydrogenases (Fe hydrogenases) in Pseudotrichonympha grassii, a large cellulolytic symbiont in the phylum Parabasalia, in the gut of the termite Coptotermes formosanus. The two Fe hydrogenases were phylogenetically distinct and had different N-terminal accessory domains. The long-form protein represented a phylogenetic lineage unique among eukaryotic Fe hydrogenases, whereas the short form was monophyletic with those of other parabasalids. Active recombinant enzyme forms of these two Fe hydrogenases were successfully obtained without the specific auxiliary maturases. Although they differed in their extent of specific activity and optimal pH, both enzymes preferentially catalyzed H(2) evolution rather than H(2) uptake. H(2) evolution, at least that associated with the short-form enzyme, was still active even under high hydrogen partial pressure. H(2) evolution activity was detected in the hydrogenosomal fraction of P. grassii cells; however, the vigorous H(2) uptake activity of the endosymbiotic bacteria compensated for the strong H(2) evolution activity of the host protists. The results suggest that termite gut symbionts are a rich reservoir of novel Fe hydrogenases whose properties are adapted to the gut environment and that the potential of H(2) production in termite guts has been largely underestimated.  相似文献   
74.
We previously showed that zooxanthellatoxin-B, isolated from dinoflagellate, caused a sustained contraction of the aorta in an external Ca2+-dependent manner. To clarify the role of Ca2+ in this action, we examined the effects of zooxanthellatoxin-B as well as a depolarizing stimulus (60 mM KCl), using the simultaneous recording for cytosolic Ca2+ level (fura-2) and developed tension in the rabbit aorta. KCl (60 mM) elicited a rapid cytosolic Ca2+ elevation followed by a pronounced contraction, and time required for half-maximum contraction was 2 min. Zooxanthellatoxin-B caused an increase in cytosolic Ca2+ followed by a gradual contraction, with a time for half-maximum contraction of 5-10 min in a concentration-dependent manner. We found a strong correlation between Ca2+ elevation and the contraction in zooxanthellatoxin-B action. In a Ca2+-free solution, zooxanthellatoxin-B caused neither the contraction nor the increase in cytosolic Ca2+. Furthermore, both pre- and post-treatment with verapamil, a voltage-operated Ca2+-channel blocker, partially suppressed both an increase in cytosolic Ca2+ and the contraction by zooxanthellatoxin-B. Zooxanthellatoxin-B-induced contraction was also inhibited by other voltage-operated Ca2+-channel blockers: nifedipine or diltiazem. These results suggest that zooxanthellatoxin-B-elicited contraction is caused by a Ca2+ influx into the smooth muscle cells, partially via voltage-operated Ca2+ channels.  相似文献   
75.
1,N(6)-Ethenodeoxyadenosine, a DNA adduct generated by exogenous and endogenous sources, severely blocks DNA synthesis and induces miscoding events in human cells. To probe the mechanism for in vivo translesion DNA synthesis across this adduct, in vitro primer extension studies were conducted using newly identified human DNA polymerases (pol) eta and kappa, which have been shown to catalyze translesion DNA synthesis past several DNA lesions. Steady-state kinetic analyses and analysis of translesion products have revealed that the synthesis is >100-fold more efficient with pol eta than with pol kappa and that both error-free and error-prone syntheses are observed with these enzymes. The miscoding events include both base substitution and frameshift mutations. These results suggest that both polymerases, particularly pol eta, may contribute to the translesion DNA synthesis events observed for 1,N(6)-ethenodeoxyadenosine in human cells.  相似文献   
76.
77.
We investigated the photoperiodic response of serotonin- and galanin (GA)- immunoreactive (ir) cells in the paraventricular organ (PVO) and infundibular nucleus (IF) of the Japanese quail and the interaction of these cells with gonadotropin-releasing hormone (GnRH)-ir neurons in the hypothalamus. Serotonin-ir cells were located in series from the PVO to the IF, and were connected with each other. The number of serotonin-ir cells differed significantly between light and dark phases on the short days (SD), but did not differ between light and dark phases on long days (LD). GA-ir cells were also found in the PVO and IF. The number of GA-ir cells under SD conditions was significantly greater than under LD conditions but did not change diurnally. Both serotonin-ir and GA-ir fibers ran along the GnRH-ir cells in the nucleus commissurae pallii. Serotonin-ir and GA-ir fibers were connected with the GnRH-ir fibers in the external layer of the median eminence (ME). We confirmed that GA-ir fibers were closely associated with serotonin-ir neurons in the PVO and IF. GA-ir neurons have at least 2 routes of regulating GnRH neurons directly, and indirectly via the serotonin-ir cells in the PVO and IF.  相似文献   
78.
An NADPH-dependent alpha-keto amide reductase was purified from Saccharomyces cerevisiae. The molecular mass of the native enzyme was estimated to be 33 and 36 kDa by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis, respectively. The purified enzyme showed a reducing activity not only for aromatic alpha-keto amides but also for aliphatic and aromatic alpha-keto esters. The internal sequence of the enzyme was identical with that of a hypothetical protein (ORF YDL 124w) coded by yeast chromosome IV.  相似文献   
79.
Several 3-alkylphenols including 3-undecylphenol, which was isolated from a Sumatran rainforest plant, were synthesized to investigate their antinematodal activity against the phytopathogenic nematodes, Bursapherencus xylophilus. A three-step synthesis involving the treatment of 2-cyclohexen-1-one with the Grignard reagent, oxidation of the resulting 1-alkyl-2-cyclohexen-1-ol and subsequent aromatization of 3-alkyl-2-cyclohexen-1-one successfully afforded such phenols. Among the 3-alkylphenols, 3-nonylphenol showed the highest activity, while 3-decylphenol and 3-undecylphenol also showed high activity.  相似文献   
80.
Interleukin (IL)-12 is a critical cytokine in the T helper (Th)1 response and host defense against intracellular microorganisms, while its role in host resistance to extracellular bacteria remains elusive. In the present study, we elucidated the role of IL-12 in the early-phase host defense against acute pulmonary infection with Streptococcus pneumoniae, a typical extracellular bacterium, using IL-12p40 gene-disrupted (IL-12p40KO) mice. IL-12p40KO mice were highly susceptible to S. pneumoniae infection, as indicated by the shortened survival time, which was completely restored by the replacement therapy with recombinant (r) IL-12, and increased bacterial counts in the lung. In these mice, recruitment of neutrophils in the lung was significantly attenuated when compared to that in wild-type (WT) mice, which correlated well with the reduced production of macrophage inflammatory protein (MIP-2) and tumor necrosis factor (TNF)-alpha in the infected tissues at the early phase of infection. In vitro synthesis of both cytokines by S. pneumoniae-stimulated lung leukocytes was significantly lower in IL-12p40KO mice than in WT mice, and addition of rIL-12 or interferon (IFN)-gamma restored the reduced production of MIP-2 and TNF-alpha in IL-12p40KO mice. Neutralizing anti-IFN-gamma monoclonal antibody (mAb) significantly decreased the effect of rIL-12. Anti-IFN-gamma mAb shortened the survival time of infected mice and reduced the recruitment of neutrophils and production of MIP-2 and TNF-alpha in the lungs. Our results indicated that IL-12p40 plays a critical role in the early-phase host defense against S. pneumoniae infection by promoting the recruitment of neutrophils to the infected tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号