首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   36篇
  2021年   5篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   14篇
  2015年   8篇
  2014年   16篇
  2013年   31篇
  2012年   34篇
  2011年   37篇
  2010年   26篇
  2009年   24篇
  2008年   26篇
  2007年   45篇
  2006年   33篇
  2005年   50篇
  2004年   36篇
  2003年   50篇
  2002年   29篇
  2001年   4篇
  2000年   6篇
  1999年   7篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   9篇
  1991年   11篇
  1990年   6篇
  1989年   12篇
  1988年   6篇
  1985年   1篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1961年   1篇
排序方式: 共有614条查询结果,搜索用时 15 毫秒
531.
N-acylethanolamines (NAEs) are a class of bioactive lipid molecules in animal tissues, including the endocannabinoid anandamide and the anti-inflammatory substance N-palmitoylethanolamine. Enzymatic hydrolysis of NAEs is considered to be an important step to regulate their endogenous levels. Lysosomal NAE-hydrolysing acid amidase (NAAA) as well as fatty acid amide hydrolase (FAAH) is responsible for this reaction. Here, we report relatively high expression of NAAA in human prostate cancer cells (PC-3, DU-145 and LNCaP) and prostate epithelial cells (PrEC), with the highest mRNA level in LNCaP cells. FAAH and the NAE-forming enzyme N-acylphosphatidylethanolamine-hydrolysing phospholipase D (NAPE-PLD) were also detected in these cells. NAAA activity in LNCaP cells could be distinguished from coexisting FAAH activity, based on their different pH dependency profiles and specific inhibition of FAAH activity by URB597. These results showed that both the enzymes were functionally active. We also found that NAAA was partly secreted from LNCaP cells, which underlined possible usefulness of this enzyme as a biomarker of prostate cancer.  相似文献   
532.
533.
Tight glycemic control in individuals with diabetes mellitus is essential to prevent or delay its complications. Present treatments to reduce hyperglycemia mainly target the ATP-sensitive K(+) (K(ATP)) channel of pancreatic beta cells to increase insulin secretion. These current approaches are often associated with the side effect of hypoglycemia. Here we show that inhibition of the activity of cyclin-dependent kinase 5 (Cdk5) enhanced insulin secretion under conditions of stimulation by high glucose but not low glucose in MIN6 cells and pancreatic islets. The role of Cdk5 in regulation of insulin secretion was confirmed in pancreatic beta cells deficient in p35, an activator of Cdk5. p35-knockout mice also showed enhanced insulin secretion in response to a glucose challenge. Cdk5 kinase inhibition enhanced the inward whole-cell Ca(2+) channel current and increased Ca(2+) influx across the L-type voltage-dependent Ca(2+) channel (L-VDCC) upon stimulation with high glucose in beta cells, but had no effect on Ca(2+) influx without glucose stimulation. The inhibitory regulation by Cdk5 on the L-VDCC was attributed to the phosphorylation of loop II-III of the alpha(1C) subunit of L-VDCC at Ser783, which prevented the binding to SNARE proteins and subsequently resulted in a decrease of the activity of L-VDCC. These results suggest that Cdk5/p35 may be a drug target for the regulation of glucose-stimulated insulin secretion.  相似文献   
534.
In rat, serine dehydratase (SDH) is abundant in the liver and known to be a gluconeogenic enzyme, while there is little information about the biochemical property of human liver serine dehydratase because of its low content and difficulty in obtaining fresh materials. To circumvent these problems, we purified recombinant enzyme from Escherichia coli, and compared some properties between human and rat liver serine dehydratases. Edman degradation showed that the N-terminal sequence of about 75% of human serine dehydratase starts from MetSTART-Met2-Ser3- and the rest from Ser3-, whereas the N-terminus of rat enzyme begins from the second codon of MetSTART-Ala2-. The heterogeneity of the purified preparation was totally confirmed by mass spectrometry. Accordingly, this observation in part fails to follow the general rule that the first Met is not removed when the side chain of the penultimate amino acid is bulky such as Met, Arg, Lys, etc. There existed the obvious differences in the local structures between the two enzymes as revealed by limited-proteolysis experiments using trypsin and Staphylococcus aureus V8 protease. The most prominent difference was found histochemically: expression of rat liver serine dehydratase is confined to the periportal region in which many enzymes involved in gluconeogenesis and urea cycle are known to coexist, whereas human liver serine dehydratase resides predominantly in the perivenous region. These findings provide an additional support to the previous notion suggested by physiological experiments that contribution of serine dehydratase to gluconeogenesis is negligible or little in human liver.  相似文献   
535.
Helicobacter pylori vacuolating cytotoxin, VacA, induces vacuolation in mammalian cell lines. Sequence differences in the middle of VacA molecules define two families, termed m1VacA and m2VacA, which differ in cell specificity. Similar to m1VacA, m2VacA is activated by acid or alkali, which enhances its binding to cells. Immunoprecipitation experiments showed that, in AZ-521 cells, activated m2VacA, similar to m1VacA, binds to two receptor-like protein tyrosine phosphatases, RPTPalpha and RPTPbeta suggesting that activated m2VacA as well as m1VacA may contribute to gastrointestinal disease following H. pylori infection. G401 cells express RPTPalpha, not RPTPbeta, and responded to both m1VacA and m2VacA. HeLa cells likewise expressed RPTPalpha, not RPTPbeta, but, in contrast to other cell lines, responded poorly to m2VacA. m1VacA associated with RPTPalpha of HeLa cells to an extent similar to that in other toxin-sensitive cells, whereas activated m2VacA bound HeLa cell RPTPalpha less well, consistent with its low vacuolating activity against these cells. The molecular mass of RPTPalpha from HeLa cells is less than that of the protein from G401 cells, although their extracellular amino acid sequences are virtually identical, with only two amino acid differences noted. Different post-translational modifications of RPTPalpha in HeLa cells may be responsible for the reduced susceptibility to m2VacA.  相似文献   
536.
537.
Expression of an interferon inducible gene 6-16, G1P3, increases not only in type I interferon-treated cells but also in human senescent fibroblasts. However, the function of 6-16 protein is unknown. Here we report that 6-16 is 34 kDa glycosylated protein and localized at mitochondria. Interestingly, 6-16 is expressed at high levels in gastric cancer cell lines and tissues. One of exceptional gastric cancer cell line, TMK-1, which do not express detectable 6-16, is sensitive to apoptosis induced by cycloheximide (CHX), 5-fluorouracil (5-FU) and serum-deprivation. Ectopic expression of 6-16 gene restored the induction of apoptosis and inhibited caspase-3 activity in TMK-1 cells. Thus 6-16 protein has anti-apoptotic function through inhibiting caspas-3. This anti-apoptotic function is expressed through inhibition of the depolarization of mitochondrial membrane potential and release of cytochrome c. By two-hybrid screening, we found that 6-16 protein interacts with calcium and integrin binding protein, CIB/KIP/Calmyrin (CIB), which interacts with presenilin 2, a protein involved in Alzheimers disease. These protein interactions possibly play a pivotal role in the regulation of apoptosis, for which further detailed analyses are need. These results overall indicate that 6-16 protein may have function as a cell survival protein by inhibiting mitochondrial-mediated apoptosis.  相似文献   
538.
Photosensitized one-electron oxidation of 5-methylcytosine in DNA by 2-methyl-1,4-naphthoquinone, attached to 5'-end of an oligodeoxynucleotide strand, produced 5-formylcytosine and led to selective DNA strand cleavage at the original 5-methylcytosine configuration. This specified photoreaction is useful for positive display of 5-methylcytosine in DNA on a sequencing gel.  相似文献   
539.
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.  相似文献   
540.
The endocannabinoid anandamide (N-arachidonoylethanolamine) and other bioactive long-chain N-acylethanolamines are thought to be formed from their corresponding N-acylphosphatidylethanolamines by a specific phospholipase D (NAPE-PLD) in the brain as well as other tissues. However, regional distribution of NAPE-PLD in the brain has not been examined. In the present study, we investigated the expression levels of NAPE-PLD in nine different regions of rat brain by enzyme assay, western blotting and real-time PCR. The NAPE-PLD activity was detected in all the tested brain regions with the highest activity in thalamus. Similar distribution patterns of NAPE-PLD were observed at protein and mRNA levels. We also found a remarkable increase in the expression levels of protein and mRNA of the brain NAPE-PLD with development, which was in good agreement with the increase in the activity. The age-dependent increase was also seen with several brain regions and other NAPE-PLD-enriched organs (heart and testis). p-Chloromercuribenzoic acid and cetyltrimethylammonium chloride, which inhibited recombinant NAPE-PLD dose-dependently, strongly inhibited the enzyme of all the brain regions. These results demonstrated wide distribution of NAPE-PLD in various brain regions and its age-dependent expression, suggesting the central role of this enzyme in the formation of anandamide and other N-acylethanolamines in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号