首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   40篇
  国内免费   1篇
  2022年   7篇
  2021年   21篇
  2020年   10篇
  2019年   11篇
  2018年   10篇
  2017年   4篇
  2016年   16篇
  2015年   23篇
  2014年   29篇
  2013年   43篇
  2012年   38篇
  2011年   36篇
  2010年   27篇
  2009年   25篇
  2008年   34篇
  2007年   30篇
  2006年   39篇
  2005年   23篇
  2004年   19篇
  2003年   18篇
  2002年   13篇
  2001年   9篇
  2000年   8篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1992年   6篇
  1991年   3篇
  1989年   7篇
  1988年   11篇
  1987年   3篇
  1986年   4篇
  1984年   5篇
  1983年   3篇
  1981年   3篇
  1979年   5篇
  1978年   3篇
  1975年   12篇
  1972年   4篇
  1970年   6篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   4篇
  1965年   2篇
  1964年   4篇
  1962年   2篇
  1960年   5篇
排序方式: 共有634条查询结果,搜索用时 203 毫秒
91.
92.
Considerable variations in the content of free amino acids, elhanol-soluble carbohydrates, starch, protein, chlorophyll, phylic acid, RNA and DNA exist in different regions of the long filaments of Cuscuta reflexa. The distinction is especially pronounced when comparison is made between the hanstoria-bearing curls of the parasite and the apical portions of the overhanging filament.  相似文献   
93.
Recently, certain lots of heparin have been associated with an acute, rapid onset of serious side effects indicative of an allergic-type reaction. To identify potential causes for this sudden rise in side effects, we examined lots of heparin that correlated with adverse events using orthogonal high-resolution analytical techniques. Through detailed structural analysis, the contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked beta1-->3 to a beta-N-acetylgalactosamine. The disaccharide unit has an unusual sulfation pattern and is sulfated at the 2-O and 3-O positions of the glucuronic acid as well as at the 4-O and 6-O positions of the galactosamine. Given the nature of this contaminant, traditional screening tests cannot differentiate between affected and unaffected lots. Our analysis suggests effective screening methods that can be used to determine whether or not heparin lots contain the contaminant reported here.  相似文献   
94.
95.
A collection of 54 clinical and agricultural isolates of Burkholderia cenocepacia was analyzed for genetic relatedness by using multilocus sequence typing (MLST), pathogenicity by using onion and nematode infection models, antifungal activity, and the distribution of three marker genes associated with virulence. The majority of clinical isolates were obtained from cystic fibrosis (CF) patients in Michigan, and the agricultural isolates were predominantly from Michigan onion fields. MLST analysis resolved 23 distinct sequence types (STs), 11 of which were novel. Twenty-six of 27 clinical isolates from Michigan were genotyped as ST-40, previously identified as the Midwest B. cenocepacia lineage. In contrast, the 12 agricultural isolates represented eight STs, including ST-122, that were identical to clinical isolates of the PHDC lineage. In general, pathogenicity to onions and the presence of the pehA endopolygalacturonase gene were detected only in one cluster of related strains consisting of agricultural isolates and the PHDC lineage. Surprisingly, these strains were highly pathogenic in the nematode Caenorhabditis elegans infection model, killing nematodes faster than the CF pathogen Pseudomonas aeruginosa PA14 on slow-kill medium. The other strains displayed a wide range of pathogenicity to C. elegans, notably the Midwest clonal lineage which displayed high, moderate, and low virulence. Most strains displayed moderate antifungal activity, although strains with high and low activities were also detected. We conclude that pathogenicity to multiple hosts may be a key factor contributing to the potential of B. cenocepacia to opportunistically infect humans both by increasing the prevalence of the organism in the environment, thereby increasing exposure to vulnerable hosts, and by the selection of virulence factors that function in multiple hosts.The betaproteobacterium Burkholderia cenocepacia, 1 of now 17 classified species belonging to the Burkholderia cepacia complex (BCC), is ubiquitous and extremely versatile in its metabolic capabilities and interactions with other organisms (38, 40, 57, 58). Strains of B. cenocepacia are pathogens of onion and banana plants, opportunistic pathogens of humans, symbionts of numerous plant rhizospheres, contaminants of pharmaceutical and industrial products, and inhabitants of soil and surface waters (14, 29, 33, 34, 37, 45). Originally described as a pathogen of onions (8), organisms of the BCC emerged in the past 3 decades as serious human pathogens, capable of causing devastating chronic lung infections in persons with cystic fibrosis (CF) or chronic granulomatous disease (21, 24, 28). Infections due to BCC are a serious concern to CF patients due to their inherent antibiotic resistance and high potential for patient-to-patient transmission (23). Although 16 of the BCC species have been recovered from respiratory secretions of CF patients in many countries (46, 58), B. cenocepacia has been the most common species isolated in North America, detected in 50% of 606, 83% of 447, and 45.6% of 1,218 patients in recent studies (35, 46, 52).The epidemiology of infectious disease caused by B. cenocepacia appears to involve patient-to-patient spread of genetically distinct lineages. B. cenocepacia lineages, such as ET12, Midwest, and PHDC, have been identified from large numbers of individuals in disease outbreaks in North America and Europe (11, 32, 54). A recently developed multilocus sequence typing (MLST) scheme has been shown to be a reliable epidemiologic tool for differentiating between the five subgroups (IIIA to IIIE) of B. cenocepacia, and strains representing three of these subgroups (IIIA, IIIB, and IIID) have been recovered from CF patients (2). Outside of the patient-to-patient transmission of clonal lineages, the mode of acquisition of strains causing sporadic cases of B. cenocepacia in CF patients remains unclear, although environmental sources are a logical reservoir for infection. Previously, an isolate of B. cenocepacia indistinguishable from the PHDC epidemic clonal lineage by using standard typing methods (e.g., repetitive-sequence-based PCR, randomly amplified polymorphic DNA, pulsed-field gel electrophoresis) was detected in an agricultural soil sample (34). Similarly, three distinct MLST sequence types containing both clinical and environmental (plant and soil) B. cenocepacia isolates were identified (1). These findings suggest that natural populations of B. cenocepacia in soil or associated with plants are a potential reservoir for the emergence of new human pathogenic lineages.Experimental models for the study of virulence potential and traits of B. cenocepacia include mouse and rat models with genetic defects allowing chronic lung infections to be established (e.g., see reference 48). Nematode (Caenorhabditis elegans), alfalfa (Medicago sativa), and onion (Allium cepa) models have also been routinely utilized for the identification of virulence factors (5, 29, 31). C. elegans has been extensively used to study the pathogenesis and virulence factors of a wide variety of bacterial and fungal pathogens (9, 15, 42, 51, 56). In several pathogens, including Pseudomonas (56) and Burkholderia (20), putative virulence factors important for the pathogenesis in mammalian systems (15, 51) have been identified using the C. elegans model. The C. elegans model might be limited in the detection of host-specific virulence factors; however, several attributes, such as small size and rapid development, make it an excellent whole animal model for pathogenesis research (16, 51).The evidence that individual strains of B. cenocepacia can be pathogenic to both plants and humans and are prevalent in various environmental niches has provoked particular interest in elucidating the clinical pathogenic potential of environmental isolates. The basis of this study was to examine whether genetically related B. cenocepacia strains exhibit shared characteristics that contribute to their pathogenicity in multiple hosts and to examine the potential for circulating environmental isolates to emerge as new clinical pathogens. Here, we tested the degree of virulence in animal (nematode) and plant (onion) infection models, the production of antifungal activity, and the genetic relatedness of clinical and environmental B. cenocepacia subgroup IIIB strains predominantly isolated from Michigan.  相似文献   
96.
K3/MIR1 and K5/MIR2 of Kaposi''s sarcoma-associated herpesvirus (KSHV) are viral members of the membrane-associated RING-CH (MARCH) ubiquitin ligase family and contribute to viral immune evasion by directing the conjugation of ubiquitin to immunostimulatory transmembrane proteins. In a quantitative proteomic screen for novel host cell proteins downregulated by viral immunomodulators, we previously observed that K5, as well as the human immunodeficiency virus type 1 (HIV-1) immunomodulator VPU, reduced steady-state levels of bone marrow stromal cell antigen 2 (BST2; also called CD317 or tetherin), suggesting that BST2 might be a novel substrate of K5 and VPU. Recent work revealed that in the absence of VPU, HIV-1 virions are tethered to the plasma membrane in BST2-expressing HeLa cells. By targeting BST2, K5 might thus similarly overcome an innate antiviral host defense mechanism. Here we establish that despite its type II transmembrane topology and carboxy-terminal glycosylphosphatidylinositol (GPI) anchor, BST2 represents a bona fide target of K5 that is downregulated during primary infection by and reactivation of KSHV. Upon exit of the protein from the endoplasmic reticulum, lysines in the short amino-terminal domain of BST2 are ubiquitinated by K5, resulting in rapid degradation of BST2. Ubiquitination of BST2 is required for degradation, since BST2 lacking cytosolic lysines was K5 resistant and ubiquitin depletion by proteasome inhibitors restored BST2 surface expression. Thus, BST2 represents the first type II transmembrane protein targeted by K5 and the first example of a protein that is both ubiquitinated and GPI linked. We further demonstrate that KSHV release is decreased in the absence of K5 in a BST2-dependent manner, suggesting that K5 contributes to the evasion of intracellular antiviral defense programs.Bone marrow stromal cell antigen 2 (BST2) was recently identified as a host cell restriction factor that prevents the release of retroviral and filoviral particles from infected host cells (23). Human immunodeficiency virus type 1 (HIV-1) counteracts this antiviral function of BST2 by expressing the viral auxiliary protein VPU (41, 53). In the absence of VPU, virus particles are prevented from budding off the cellular membrane in cells that express BST2, resulting in virions being tethered to the plasma membrane. BST2 was therefore renamed tetherin (41), although questions still remain as to whether BST2 acts as the actual tether and whether BST2-dependent tethering occurs in all BST2-expressing cell types (36). Independently, BST2 was shown to be induced by type I and type II interferons (IFNs) (7), suggesting that BST2 is part of the innate antiviral response triggered in infected cells.Using a quantitative membrane proteomic approach, we observed that BST2 is underrepresented in plasma membranes from cells expressing not only VPU (14) but also the K5 protein of Kaposi''s sarcoma-associated herpesvirus (KSHV) (4). K5 is a viral homologue of a family of cellular transmembrane ubiquitin ligases, termed membrane-associated RING-CH (MARCH) proteins (3), that mediate the ubiquitination of the cytoplasmic portion of transmembrane proteins (reviewed in reference 40). Each member of this family targets a subset of cellular membrane proteins with both unique and shared specificities (4, 56). One of the functions of cellular MARCH proteins is to modulate antigen presentation by mediating the ubiquitin-dependent turnover of major histocompatibility complex (MHC) class II molecules in dendritic cells, B cells, and monocytes/macrophages (43, 52). In contrast, viral homologues of MARCH proteins encoded by KSHV, murine herpesvirus 68, and the leporipoxvirus myxomavirus all share the ability to mediate the destruction of MHC-I (reviewed in reference 16) but not MHC-II molecules. Thus, one of the functions of the viral proteins is to promote viral escape from immune clearance by CD8+ T lymphocytes (50). Furthermore, each viral MARCH homologue specifically eliminates additional host cell proteins, so each plays multiple roles in viral pathogenesis. KSHV carries two viral MARCH proteins, K3 and K5, also known as MIR1 and MIR2, which both support viral escape from T-cell, NK-cell, and NKT-cell recognition by eliminating the corresponding ligands from the surfaces of infected cells (reviewed in reference 10). In endothelial cells (ECs), K5 additionally downregulates EC-specific adhesion molecules that play an essential role in the formation of adhesive platforms and adherens junctions (31, 32). Since Kaposi''s sarcoma is a tumor of EC origin, K5 might thus also contribute to tumorigenesis by disrupting normal EC barrier function and by modulating the interaction of ECs with inflammatory leukocytes.The downregulation of BST2 by K5 further suggests that K5 also counteracts innate antiviral responses, which might benefit KSHV. However, most transmembrane proteins targeted by viral or cellular MARCH proteins are type I transmembrane proteins that belong to the immunoglobulin superfamily. In contrast, BST2 is a type II transmembrane protein that is also glycosylphosphatidylinositol (GPI) anchored (25). Thus, BST2 has a short cytoplasmic amino terminus followed by an outside-in transmembrane domain, a large glycosylated extracellular portion, and a GPI anchor. The additional propensity of BST2 to form homodimers (44) was speculated to be crucial for the tethering function of BST2 in that self-association of BST2 molecules in the viral envelope with plasma membrane BST2 could prevent viral exit (19). The unusual topology of BST2 and its multimerization raised the question of whether BST2 is a bona fide target of K5 or whether its downregulation is a downstream effect of K5 eliminating other transmembrane proteins. Additionally, it is not clear whether BST2 would be downregulated in the context of a normal viral infection and, particularly, whether virally expressed K5 would be able to overcome the high expression levels of BST2 observed upon IFN induction. We now demonstrate that KSHV efficiently downregulates IFN-induced BST2 both during primary infection and upon reactivation from latency in ECs. IFN-induced BST2 is ubiquitinated by K5 upon exiting the endoplasmic reticulum (ER) and is rapidly degraded by a pathway that is sensitive to proteasome inhibitors but resistant to inhibitors of lysosomal acidification. These data suggest that despite its unusual topology, BST2 is directly targeted by K5. We further demonstrate that BST2 reduces KSHV release upon inhibition of K5 expression by small interfering RNA (siRNA), suggesting that BST2 is part of the IFN-induced innate immune response to KSHV. Thus, in addition to contributing to viral evasion of cellular immune responses and remodeling EC function, K5 also counteracts the innate immune defense of the host cell.  相似文献   
97.
Uroporphyrinogen decarboxylase (UROD) is a key enzyme in the heme-biosynthetic pathway and in Plasmodium falciparum it occupies a strategic position in the proposed hybrid pathway for heme biosynthesis involving shuttling of intermediates between different subcellular compartments in the parasite. In the present study, we demonstrate that an N-terminally truncated recombinant P. falciparum UROD (r(Δ)PfUROD) over-expressed and purified from Escherichia coli cells, as well as the native enzyme from the parasite were catalytically less efficient compared with the host enzyme, although they were similar in other enzyme parameters. Molecular modeling of PfUROD based on the known crystal structure of the human enzyme indicated that the protein manifests a distorted triose phosphate isomerase (TIM) barrel fold which is conserved in all the known structures of UROD. The parasite enzyme shares all the conserved or invariant amino acid residues at the active and substrate binding sites, but is rich in lysine residues compared with the host enzyme. Mutation of specific lysine residues corresponding to residues at the dimer interface in human UROD enhanced the catalytic efficiency of the enzyme and dimer stability indicating that the lysine rich nature and weak dimer interface of the wild-type PfUROD could be responsible for its low catalytic efficiency. PfUROD was localised to the apicoplast, indicating the requirement of additional mechanisms for transport of the product coproporphyrinogen to other subcellular sites for its further conversion and ultimate heme formation.  相似文献   
98.
99.
Myocardial infarction continues to be a leading cause of mortality world-wide. Novel therapies are needed to treat the myocardial ischemia. This study was undertaken to evaluate the cardioprotective role of hesperidin on isoproterenol-induced myocardial ischemia in rats. Myocardial ischemia was induced by subcutaneous injection of isoproterenol hydrochloride (85 mg/kg body weight), for two consecutive days. Isoproterenol-administered rats showed elevated levels of cardiac markers (aspartate transaminase, alanine transaminase, lactate dehydrogenase, creatine kinase, creatine kinase-MB, cardiac troponins T and I) when compared with control and hesperidin treatment groups (100, 200 and 400 mg/kg body weight). The serum levels of cardiac markers were significantly reduced at the doses of 200 mg and 400 mg. All further experiments were carried out at the 200 mg dose. Lipid peroxidation markers (thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes) were elevated significantly in the plasma and heart whereas non-enzymic antioxidants (vitamin C, vitamin E and reduced glutathione) were decreased significantly. Activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase declined significantly in the heart of ischemic rats. However, after hesperidin treatment, all the above parameters reverted to normal levels. This study demonstrated that the cardioprotective effect of hesperidin on ischemic rats could be due to its anti-lipid peroxidative and antioxidant properties.  相似文献   
100.
Galangin is an antioxidant flavonol present in high concentrations in the rhizome of Alpinia galanga. We investigated the effect of galangin on whole-body insulin resistance and kidney oxidative stress in a fructose-induced rat model of metabolic syndrome. Male albino Wistar rats were divided into 6 groups containing six animals each. Groups I and VI received a starch-based control diet, while groups II, III, IV and V were fed a high fructose diet (60 g/100 g). Groups III, IV and V additionally received galangin (50, 100 and 200 μg/kg body weight, respectively) while group VI received 200 μg galangin/kg body weight. At the end of 60 days, fructose-fed rats exhibited insulin resistance, increased levels of peroxidation end products and diminished antioxidant status. galangin, dose-dependently normalized blood glucose and insulin levels. The minimum effective dose was 100 μg galangin/kg body weight. At this dose, galangin also prevented the development of insulin resistance and the exaggerated the response to oral glucose challenge. The oxidant-antioxidant balance was maintained by galangin. Micro-albuminuria and tubular and glomerular changes observed in fructose-treated rats were significantly prevented by galangin (100 μg/kg body weight). These findings imply that galangin potentiates insulin sensitivity and antioxidant capacity and reduces renal damage in this dietary model of metabolic syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号