首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1506篇
  免费   99篇
  国内免费   2篇
  2023年   6篇
  2022年   16篇
  2021年   46篇
  2020年   22篇
  2019年   39篇
  2018年   40篇
  2017年   33篇
  2016年   63篇
  2015年   68篇
  2014年   81篇
  2013年   109篇
  2012年   106篇
  2011年   156篇
  2010年   55篇
  2009年   70篇
  2008年   96篇
  2007年   81篇
  2006年   73篇
  2005年   70篇
  2004年   55篇
  2003年   51篇
  2002年   53篇
  2001年   21篇
  2000年   15篇
  1999年   13篇
  1998年   14篇
  1997年   10篇
  1996年   8篇
  1995年   5篇
  1994年   4篇
  1993年   8篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1987年   7篇
  1985年   4篇
  1984年   8篇
  1983年   3篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1977年   10篇
  1976年   4篇
  1975年   9篇
  1974年   13篇
  1973年   6篇
  1971年   4篇
  1968年   3篇
排序方式: 共有1607条查询结果,搜索用时 19 毫秒
51.

Escherichia coli strains W3110 and BL21 were engineered for the production of plasmid DNA (pDNA) under aerobic and transitions to microaerobic conditions. The gene coding for recombinase A (recA) was deleted in both strains. In addition, the Vitreoscilla hemoglobin (VHb) gene (vgb) was chromosomally inserted and constitutively expressed in each E. coli recA mutant and wild type. The recA inactivation increased the supercoiled pDNA fraction (SCF) in both strains, while VHb expression improved the pDNA production in W3110, but not in BL21. Therefore, a codon-optimized version of vgb was inserted in strain BL21recA, which, together with W3110recAvgb+, was tested in cultures with shifts from aerobic to oxygen-limited regimes. VHb expression lowered the accumulation of fermentative by-products in both strains. VHb-expressing cells displayed higher oxidative activity as indicated by the Redox Sensor Green fluorescence, which was more intense in BL21 than in W3110. Furthermore, VHb expression did not change pDNA production in W3110, but decreased it in BL21. These results are useful for understanding the physiological effects of VHb expression in two industrially relevant E. coli strains, and for the selection of a host for pDNA production.

  相似文献   
52.
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG‐11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+/H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.  相似文献   
53.
ObjectiveMaize is an important crop for fodder, food and feed industry. The present study explores the plant-microbe interactions as alternative eco-friendly sustainable strategies to enhance the crop yield.MethodologyBacterial diversity was studied in the rhizosphere of maize by culture-dependent and culture-independent techniques by soil sampling, extraction of DNA, amplification of gene of interest, cloning of desired fragment and library construction.ResultsCulturable bacteria were identified as Achromobacter, Agrobacterium, Azospirillum, Bacillus, Brevibacillus, Bosea, Enterobacter, Microbacterium, Pseudomonas, Rhodococcus, Stenotrophomonas and Xanthomonas genera. For culture-independent approach, clone library of 16S ribosomal RNA gene was assembled and 100 randomly selected clones were sequenced. Majority of the sequences were related to Firmicutes (17%), Acidobacteria (16%), Actinobacteria (17%), Alpha-Proteobacteria (7%), Delta-proteobacteria (4.2%) and Gemmatimonadetes (4.2%) However, some of the sequences (30%) were novel that showed no homologies to phyla of cultured bacteria in the database. Diversity of diazotrophic bacteria in the rhizosphere investigated by analysis of PCR-amplified nifH gene sequence that revealed abundance of sequences belonging to genera Azoarcus (25%), Aeromonas (10%), Pseudomonas (10%). The diazotrophic genera Azotobacter, Agrobacterium and Zoogloea related nifH sequences were also detected but no sequence related to Azospirillum was found showing biasness of the growth medium rather than relative abundance of diazotrophs in the rhizosphere.ConclusionThe study provides a foundation for future research on focussed isolation of the Azoarcus and other diazotrophs found in higher abundance in the rhizosphere.  相似文献   
54.
ObjectivePhosphorous is an essential micronutrient of plants and involved in critical biological functions. In nature, phosphorous is mostly present in immobilized inorganic mineral and in the fixed organic form including phytic acid and phosphoesteric compounds. However, the bioavailability of bound phosphorous could be enhanced by the use of phosphate solubilizing microorganisms such as bacteria and fungi. The phytases are widespread in an environment and have been isolated from different sources comprising bacteria and fungi.MethodologyIn current studies, we show the successful use of gamma rays and EMS (Ethyl Methane Sulphonate) mutagenesis for enhanced activity of phytases in a fungal strain Sporotrichum thermophile.ResultsWe report an improved strain ST2 that could produce a clear halo zone around the colony, up to 24 mm. The maximum enzymatic activity was found of 382 U/mL on pH 5.5. However, the phytase activity was improved to 387 U/ml at 45 °C. We also report that the mutants produced through EMS showed the greater potential for phytase production.ConclusionThe current study highlights the potential of EMS mutagenesis for strain improvement over physical mutagens.  相似文献   
55.
Reproductive structures, modes, and seasonal patterns of size–class abundances are examined in two benthic platyctene (Family Coeloplanidae) ctenophore species present in dissimilar shallow marine environments in subtropical southeast Florida. Coeloplana waltoni, a minute (1–3 mm body length) epizoic associate of octocorals, occurs in exposed environments often under turbulent conditions, and Vallicula multiformis (2–10 mm) commonly occurs epiphytically on macroalgae in protected, calm‐water environments. Reproductive activity in C. waltoni is most active during the warm‐water summer season (June–October); gonadal development in V. multiformis occurs year‐round, and is most pronounced during sea‐warming periods in late spring (May) and late summer to early autumn (August–October), with release of cydippid larvae. Both species are hermaphroditic brooders, exhibiting paedogenesis (early gonadal development) at body lengths approximately one‐third (Coeloplana) to one‐sixth (Vallicula) of maximum adult size. Juvenile individuals (<0.6 mm) increased in abundance in C. waltoni during the summer reproductive period, and large (≥1 mm) pink‐colored individuals comprised 50% or more of samples from July through September. Seasonal abundance of gravid individuals and the timing of cydippid larval release in V. multiformis did not correspond closely with juvenile or adult population densities. Asexual fragmentation occurred in both ctenophore species, but was observed more frequently in individuals of V. multiformis. This asexual mode of reproduction probably accounted in part for the discordance between ctenophore abundances and larval recruitment events by sexual means. Morphological structures and behaviors associated with reproduction are described in this study. Uncommon images of reproductive products (gametes, embryos, larvae), spawning events, brooding, and asexual fragmentation are included, some for the first time in the published literature.  相似文献   
56.
57.
Many asexual animal populations comprise a mixture of genetically different lineages, but to what degree this genetic diversity leads to ecological differences remains often unknown. Here, we test whether genetically different clonal lineages of Aptinothrips grass thrips differ in performance on a range of plants used as hosts in natural populations. We find a clear clone‐by‐plant species interactive effect on reproductive output, meaning that clonal lineages perform differently on different plant species and thus are characterized by disparate ecological niches. This implies that local clonal diversities can be driven and maintained by frequency‐dependent selection and that resource heterogeneity can generate diverse clone assemblies.  相似文献   
58.
We have used multifrequency electron paramagnetic resonance to define the multistate structural dynamics of an integral membrane protein, phospholamban (PLB), in a lipid bilayer. PLB is a key regulator of cardiac calcium transport, and its function requires transitions between distinct states of intramolecular dynamics. Monomeric PLB was synthesized with the TOAC spin label at positions 11 (in the cytoplasmic domain) and 46 (in the transmembrane domain) and reconstituted into lipid bilayers. Unlike other protein spin labels, TOAC reports directly the motion of the peptide backbone, so quantitative analysis of its dynamics is worthwhile. Electron paramagnetic resonance spectra at 9.4 GHz (X-band) and 94 GHz (W-band) were analyzed in terms of anisotropic rotational diffusion of the two domains. Motion of the transmembrane domain is highly restricted, while the cytoplasmic domain exhibits two distinct conformations, a major one with moderately restricted nanosecond dynamics (T) and another with nearly unrestricted subnanosecond motion (R). The global analysis of spectra at two frequencies yielded values for the rotational correlation times and order parameters that were much more precisely determined than at either frequency alone. Multifrequency EPR is a powerful approach for analysis of complex rotational dynamics of proteins.  相似文献   
59.
Optimization of fed-batch feeding parameters was explored for a system with multiple mechanisms of product inactivation. In particular, two separate mechanisms of inactivation were identified for the recombinant tissue-type activator (r-tPA) protein. Dynamic inactivation models were written to describe particular r-tPA glycoform inactivation in the presence and absence of free-glucose. A glucose-independent inactivation mechanism was identified, and inactivation rate constants were found dependent upon the presence of glycosylation of r-tPA at N184. Inactivation rate constants of the glucose-dependent mechanism were not affected by glycosylation at N184. Fed-batch optimization was performed for r-tPA production by CHO cell culture in a stirred-tank reactor with glucose, glutamine and asparagine feed. Feeding profiles in which culture supernatant concentrations of free-glucose and amino acids (combined glutamine and asparagine) were used as control variables, were evaluated for a wide variety of set points. Simulation results for a controlled feeding strategy yielded an optimum at set points of 1.51 g L(-1) glucose and 1.18 g L(-1) of amino acids. Optimization was also performed in absence of metabolite control using fixed feed-flow rates initiate during the exponential growth phase. Fixed feed-flow results displayed a family of optimum solutions along a mass flow rate ratio of 3.15 of glucose to amino acids. Comparison of the two feeding strategies showed a slight advantage of rapid feeding at a fixed flow rate as opposed to metabolite control for a product with multiple mechanisms of inactivation.  相似文献   
60.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号