首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3288篇
  免费   282篇
  国内免费   148篇
  2023年   32篇
  2022年   53篇
  2021年   146篇
  2020年   113篇
  2019年   102篇
  2018年   106篇
  2017年   59篇
  2016年   113篇
  2015年   197篇
  2014年   219篇
  2013年   229篇
  2012年   258篇
  2011年   228篇
  2010年   148篇
  2009年   126篇
  2008年   140篇
  2007年   146篇
  2006年   137篇
  2005年   114篇
  2004年   89篇
  2003年   78篇
  2002年   60篇
  2001年   60篇
  2000年   65篇
  1999年   69篇
  1998年   40篇
  1997年   31篇
  1996年   21篇
  1995年   32篇
  1994年   28篇
  1993年   13篇
  1992年   27篇
  1991年   28篇
  1990年   38篇
  1989年   31篇
  1988年   37篇
  1987年   22篇
  1986年   25篇
  1985年   30篇
  1984年   20篇
  1983年   18篇
  1982年   13篇
  1980年   17篇
  1979年   15篇
  1978年   15篇
  1977年   13篇
  1976年   14篇
  1975年   17篇
  1971年   12篇
  1970年   12篇
排序方式: 共有3718条查询结果,搜索用时 15 毫秒
101.
Cancer stem cells (CSCs) are a source of tumour recurrence in patients with nasopharyngeal carcinoma (NPC); however, the function of microRNA‐124 (miR‐124) in NPC CSCs has not been clearly defined. In this study, we investigated the role of miR‐124 in NPC CSCs. qRT‐PCR was performed to measure miR‐124 expression in NPC tissues and cell lines and the effects of miR‐124 on stem‐like properties and radiosensitivity of NPC cells measured. Luciferase reporter assays and rescue experiments were used to investigate the interaction of miR‐124 with the 3′UTR of junctional adhesion molecule A (JAMA). Finally, we examined the effects of miR‐124 in an animal model and clinical samples. Down‐regulation of miR‐124 was detected in cancer tissues and was inversely associated with tumour stage and lymph node metastasis. Overexpression of miR‐124 inhibited stemness properties and enhanced radiosensitivity of NPC cells in vitro and in vivo via targeting JAMA. Up‐regulation of miR‐124 was correlated with superior overall survival of patients with NPC. Our study demonstrates that miR‐124 can inhibit stem‐like properties and enhance radiosensitivity by directly targeting JAMA in NPC. These findings provide novel insights into the molecular mechanisms underlying therapy failure in NPC.  相似文献   
102.
103.
104.
Lithium–sulfur batteries are a promising high energy output solution for substitution of traditional lithium ion batteries. In recent times research in this field has stepped into the exploration of practical applications. However, their applications are impeded by cycling stability and short life‐span mainly due to the notorious polysulfide shuttle effect. In this work, a multifunctional sulfur host fabricated by grafting highly conductive Co3Se4 nanoparticles onto the surface of an N‐doped 3D carbon matrix to inhibit the polysulfide shuttle and improve the sulfur utilization is proposed. By regulating the carbon matrix and the Co3Se4 distribution, N‐CN‐750@Co3Se4‐0.1 m with abundant polar sites is experimentally and theoretically shown to be a good LiPSs absorbent and a sulfur conversion accelerator. The S/N‐CN‐750@Co3Se4‐0.1 m cathode shows excellent sulfur utilization, rate performance, and cyclic durability. A prolonged cycling test of the as‐fabricated S/N‐CN‐750@Co3Se4‐0.1 m cathode is carried out at 0.2 C for more than 5 months which delivers a high initial capacity of 1150.3 mAh g?1 and retains 531.0 mAh g?1 after 800 cycles with an ultralow capacity reduction of 0.067% per cycle, maintaining Coulombic efficiency of more than 99.3%. The reaction details are characterized and analyzed by ex situ measurements. This work highly emphasizes the potential capabilities of transition‐metal selenides in lithium–sulfur batteries.  相似文献   
105.
Potassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g?1 at 100 mA g?1 over 100 cycles and a high rate capability of 158 mAh g?1 at 2000 mA g?1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg?1 and a power density of 920 W kg?1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).  相似文献   
106.
Luo  Dan  Xia  Zhi  Li  Heng  Tu  Danna  Wang  Ting  Zhang  Wei  Peng  Lu  Yi  Wenfu  Zhang  Sai  Shu  Junhua  Xu  Hui  Li  Yong  Shi  Buyun  Huang  Chengjiao  Tang  Wen  Xiao  Shuna  Shu  Xiaolan  Liu  Yan  Zhang  Yuan  Guo  Shan  Yu  Zhi  Wang  Baoxiang  Gao  Yuan  Hu  Qinxue  Wang  Hanzhong  Song  Xiaohui  Mei  Hong  Zhou  Xiaoqin  Zheng  Zhenhua 《中国病毒学》2020,35(6):861-867
In December 2019, SARS-CoV-2 was first detected in the samples obtained from three adult patients who suffered from an unknown viral pneumonia in Wuhan (Li et al. 2020). This unknown viral pneumonia is further named as coronavirus disease 2019 (COVID-19) by the World Health Organization. To date, the number of new COVID-19 cases has continued to skyrocket and the impact of SARS-CoV-2 on humans is far greater than any pathogen of this century in both breadth and depth. Previous studies have shown that adults with COVID-19 have symptoms of fever, dry cough, dyspnea, fatigue and lymphocytopenia. Moreover, COVID-19 is more likely to cause death in the elderly, especially those with chronic comorbidities (Huang et al. 2020). In Wuhan, more than 50, 000 COVID-19 cases have been confirmed, including over 780 pediatric patients, and only one child death case (Lu et al. 2020). Although the number of children cases was far fewer than that of adults, COVID-19 might endanger children's health and the information on children remains limited, especially in serological study. In the retrospective study, the investigators analyzed the epidemiological, clinical and serological characteristics of children with COVID-19 in Wuhan in the early stages of the outbreak, which might provide theoretical and practical help in controlling COVID-19 and similar emerging infectious diseases in the future.  相似文献   
107.
This study was designed to investigate the protective effect of CD4+CD25+ regulatory T cells (Tregs) against zona pellucida glycoprotein 3 peptide (pZP3) immunization‐induced premature ovarian insufficiency (POI) in mice. A mouse POI model was induced by two subcutaneous injections of pZP3 (50 nmol/L). Mice in the pZP3‐Treg group were intraperitoneally injected with 5 × 105 CD4+CD25+ Tregs after the POI model was established. Sex hormone levels, follicle numbers, apoptotic events, and the Akt/FOXO3a signaling pathway molecules in the ovaries were assessed. Compared with control group, the weight of ovaries in both pZP3 group and pZP3‐Treg group was decreased and no difference was found between them. The number of follicles in the Treg transferred mice, like in pZP3 group, was significantly reduced compared to the control group, but showed a modest improvement when compared the pZP3 group alone. Significantly lower serum concentrations of follicle‐stimulating hormone, luteinizing hormone, and anti‐zona pellucida antibodies (AZPAbs) were found, while the concentrations of estradiol and anti‐Mullerian hormone increased. In mechanism, Treg cell transfer to ZP3 treated mice restored the levels of Caspase3 to control levels, and partially restored Bax, however, had no effect on Bcl‐2. Moreover, Treg cell transfer to ZP3 treated mice partially restored the levels of Akt and FOXO3a, and partially restored the ratios of p‐Akt/Akt and p‐FOXO3a/FOXO3a. In conclusion, Treg cells improved some aspects of ZP3‐induced POI which may be mediate by suppressing ovarian cells apoptosis and involving the Akt/FOXO3a signaling pathway. Therefore, Treg cells may be protective against autoimmune POI.  相似文献   
108.
BackgroundChagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance.Methodology/principal findingsWe used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs.Conclusions/significanceThese observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests.  相似文献   
109.
LncRNAs play a pivotal role in the regulation of epigenetic modification, cell cycle, differentiation, proliferation, migration and other physiological activities. In particular, considerable studies have shown that the aberrant expression and dysregulation of lncRNAs are widely implicated in cancer initiation and progression by acting as tumour promoters or suppressors. Hippo signalling pathway has attracted researchers’ attention as one of the critical cancer‐related pathways in recent years. Increasing evidences have demonstrated that lncRNAs could interact with Hippo cascade and thereby contribute to acquisition of multiple malignant hallmarks, including proliferation, metastasis, relapse and resistance to anti‐cancer treatment. Specifically, Hippo signalling pathway is reported to modulate or be regulated by widespread lncRNAs. Intriguingly, certain lncRNAs could form a reciprocal feedback loop with Hippo signalling. More speculatively, lncRNAs related to Hippo pathway have been poised to become important putative biomarkers and therapeutic targets in human cancers. Herein, this review focuses on the crosstalk between lncRNAs and Hippo pathway in carcinogenesis, summarizes the comprehensive role of Hippo‐related lncRNAs in tumour progression and depicts their clinical diagnostic, prognostic or therapeutic potentials in tumours.  相似文献   
110.
果胶甲酯酶的结构与功能研究进展   总被引:1,自引:0,他引:1  
王胜  孟昆  罗会颖  姚斌  涂涛 《生物工程学报》2020,36(6):1021-1030
果胶甲酯酶(PME)是一种重要的果胶酶,其水解果胶中的甲酯基从而释放甲醇并降低果胶的甲酯化程度。目前在食品加工、茶饮料、造纸等生产工艺中有着广泛的应用前景。随着对PME的深入研究,已报道了几种不同来源的酶晶体结构,对这些已获得的晶体结构进行分析发现,PME属于右手平行β-螺旋结构,其催化残基为2个保守的天冬氨酸和1个谷氨酰胺残基,并且在催化过程中分别起到了一般酸碱、亲核试剂以及稳定中间体的作用。同时对其底物特异性进行分析,初步了解其底物与活性位点的识别机制。文中针对这几个相关方面进行了系统的综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号