首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10645篇
  免费   792篇
  国内免费   997篇
  2024年   21篇
  2023年   162篇
  2022年   248篇
  2021年   751篇
  2020年   452篇
  2019年   557篇
  2018年   545篇
  2017年   372篇
  2016年   512篇
  2015年   792篇
  2014年   899篇
  2013年   905篇
  2012年   1061篇
  2011年   939篇
  2010年   531篇
  2009年   498篇
  2008年   537篇
  2007年   445篇
  2006年   346篇
  2005年   274篇
  2004年   238篇
  2003年   249篇
  2002年   199篇
  2001年   148篇
  2000年   118篇
  1999年   128篇
  1998年   73篇
  1997年   68篇
  1996年   63篇
  1995年   50篇
  1994年   37篇
  1993年   25篇
  1992年   41篇
  1991年   23篇
  1990年   21篇
  1989年   37篇
  1988年   14篇
  1987年   8篇
  1986年   10篇
  1985年   21篇
  1984年   4篇
  1983年   8篇
  1982年   2篇
  1981年   2篇
排序方式: 共有10000条查询结果,搜索用时 185 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
  相似文献   
3.
Suspension culture of Ajuga lobata D. Don cells provides a method of synthesis of the phytoecdysteroid 20-hydroxyecdysone (20E) which can regulate the molting process of larvae. We characterized the culture conditions to optimize 20E production. Growth of A. lobata D. Don cells fits the logistic equation curve with a growth cycle of 19 days. Medium conductivity was negatively correlated with dry cell weight and 20E accumulation, thus could be used to determine the optimal time for cell harvest. Continuous subculture reduced 20E synthesis, but supplementing medium with 20E precursors mevalonic (MVA), α-Pinene, and nitric oxide (NO) can significantly promote cell growth and influence 20E accumulation. Combination of α-Pinene, MVA, and SNP significantly elevated 20E accumulation, thus may synergistically enhance 20E synthesis in A. lobata D. Don. The optimal concentrations of α-Pinene, MVA, and NO donor SNP in suspension culture were 50 μL L?1, 10 mg L?1, and 80 μmol L?1.  相似文献   
4.
Yan  Xue  Liu  Jia  Wu  Ke-Xin  Yang  Nan  Pan  Li-Ben  Song  Ying  Liu  Yang  Tang  Zhong-Hua 《Journal of Plant Growth Regulation》2022,41(6):2421-2434
Journal of Plant Growth Regulation - Early-spring plants are a special type of plant that complete their life cycle promptly in cold, early spring. Very little effort has been made into researching...  相似文献   
5.
In the fruitfly, Drosophila melanogaster, autophagy and caspase activity function in parallel in the salivary gland during metamorphosis and in a common regulatory hierarchy during oogenesis. Both autophagy and caspase activity progressively increase in the remodeling fat body, and they are induced by a pulse of the molting hormone (20-hydroxyecdysone, 20E) during the larval-prepupal transition. Inhibition of autophagy and/or caspase activity in the remodeling fat body results in 25–40% pupal lethality, depending on the genotypes. Interestingly, a balancing crosstalk occurs between autophagy and caspase activity in this tissue: the inhibition of autophagy induces caspase activity and the inhibition of caspases induces autophagy. The Drosophila remodeling fat body provides an in vivo model for understanding the molecular mechanism of the balancing crosstalk between autophagy and caspase activity, which oppose with each other and are induced by the common stimulus 20E, and blockage of either path reinforces the other path.  相似文献   
6.
7.
Pancreatic ductal adenocarcinoma (PDAC) is an invasive and aggressive cancer that remains a major threat to human health across the globe. Despite advances in cancer treatments and diagnosis, the prognosis of PDAC patients remains poor. New and more effective PDAC therapies are therefore urgently required. In this study, we identified a novel host factor, namely the LncRNA TP73-AS1, as overexpressed in PDAC tissues compared to adjacent healthy tissue samples. The overexpression of TP-73-AS1 was found to correlate with both PDAC stage and lymph node metastasis. To reveal its role in PDCA, we targeted TP73-AS1 using LnRNA inhibitors in a range of pancreatic cancer (PC) cell lines. We found that the inhibition of TP73-AS1 led to a loss of MMP14 expression in PC cells and significantly inhibited their migratory and invasive capacity. No effects of TP73-AS1 on cell survival or proliferation were observed. Mechanistically, we found that TP73-AS1 suppressed the expression of the known oncogenic miR-200a. Taken together, these data highlight the prognostic potential of TP73-AS1 for PC patients and highlight it as a potential anti-PDAC therapeutic target.  相似文献   
8.
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death worldwide with limited therapeutic options. Comprehensive investigation of protein posttranslational modifications in HCC is still limited. Lysine acetylation is one of the most common types of posttranslational modification involved in many cellular processes and plays crucial roles in the regulation of cancer. In this study, we analyzed the proteome and K-acetylome in eight pairs of HCC tumors and normal adjacent tissues using a timsTOF Pro instrument. As a result, we identified 9219 K-acetylation sites in 2625 proteins, of which 1003 sites exhibited differential acetylation levels between tumors and normal adjacent tissues. Interestingly, many novel tumor-specific K-acetylation sites were characterized, for example, filamin A (K865), filamin B (K697), and cofilin (K19), suggesting altered activities of these cytoskeleton-modulating molecules, which may contribute to tumor metastasis. In addition, we observed an overall suppression of protein K-acetylation in HCC tumors, especially for enzymes from various metabolic pathways, for example, glycolysis, tricarboxylic acid cycle, and fatty acid metabolism. Moreover, the expression of deacetylase sirtuin 2 (SIRT2) was upregulated in HCC tumors, and its role of deacetylation in HCC cells was further explored by examining the impact of SIRT2 overexpression on the proteome and K-acetylome in Huh7 HCC cells. SIRT2 overexpression reduced K-acetylation of proteins involved in a wide range of cellular processes, including energy metabolism. Furthermore, cellular assays showed that overexpression of SIRT2 in HCC cells inhibited both glycolysis and oxidative phosphorylation. Taken together, our findings provide valuable information to better understand the roles of K-acetylation in HCC and to treat this disease by correcting the aberrant acetylation patterns.  相似文献   
9.
10.
The bioinorganic complexes of europium with N-acetyl-DL-alanine, N-acetyl-DL-valine, and DL-alanyl-DL-alanine have been synthesized and the M?ssbauer spectra at room temperature have been measured for these solid state complexes. The M?ssbauer parameters indicate that the water molecules in these complexes are not directly linked to the central europium ion and are outside the coordination sphere of europium and biological ligands, and that the chemical bond between the europium ion and the ligands may be predominantly ionic in character, with the possibility of partial covalent contribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号