首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7676篇
  免费   496篇
  国内免费   9篇
  2023年   66篇
  2022年   105篇
  2021年   336篇
  2020年   160篇
  2019年   184篇
  2018年   247篇
  2017年   191篇
  2016年   233篇
  2015年   363篇
  2014年   413篇
  2013年   596篇
  2012年   586篇
  2011年   516篇
  2010年   294篇
  2009年   256篇
  2008年   316篇
  2007年   322篇
  2006年   278篇
  2005年   243篇
  2004年   245篇
  2003年   204篇
  2002年   198篇
  2001年   136篇
  2000年   120篇
  1999年   99篇
  1998年   53篇
  1997年   50篇
  1996年   49篇
  1995年   33篇
  1994年   40篇
  1993年   34篇
  1992年   72篇
  1991年   79篇
  1990年   81篇
  1989年   64篇
  1988年   76篇
  1987年   57篇
  1986年   48篇
  1985年   61篇
  1984年   57篇
  1983年   48篇
  1982年   32篇
  1980年   35篇
  1979年   45篇
  1978年   44篇
  1977年   38篇
  1976年   37篇
  1974年   40篇
  1973年   31篇
  1970年   31篇
排序方式: 共有8181条查询结果,搜索用时 31 毫秒
991.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is the leading cause of death due to bacterial infections in mankind, and BCG, an attenuated strain of Mycobacterium bovis, is an approved vaccine. BCG sequesters in immature phagosomes of antigen presenting cells (APCs), which do not fuse with lysosomes, leading to decreased antigen processing and reduced Th1 responses. However, an Mtb derived ΔfbpA attenuated mutant underwent limited phagosome maturation, enhanced immunogenicity and was as effective as BCG in protecting mice against TB. To facilitate phagosome maturation of ΔfbpA, we disrupted an additional gene sapM, which encodes for an acid phosphatase. Compared to the wild type Mtb, the ΔfbpAΔsapM (double knock out; DKO) strain was attenuated for growth in mouse macrophages and PMA activated human THP1 macrophages. Attenuation correlated with increased oxidants in macrophages in response to DKO infection and enhanced labeling of lysosomal markers (CD63 and rab7) on DKO phagosomes. An in vitro Antigen 85B peptide presentation assay was used to determine antigen presentation to T cells by APCs infected with DKO or other mycobacterial strains. This revealed that DKO infected APCs showed the strongest ability to present Ag85B to T cells (>2500 pgs/mL in 4 hrs) as compared to APCs infected with wild type Mtb or ΔfbpA or ΔsapM strain (<1000 pgs/mL in 4 hrs), indicating that DKO strain has enhanced immunogenicity than other strains. The ability of DKO to undergo lysosomal fusion and vacuolar acidification correlated with antigen presentation since bafilomycin, that inhibits acidification in APCs, reduced antigen presentation. Finally, the DKO vaccine elicited a better Th1 response in mice after subcutaneous vaccination than either ΔfbpA or ΔsapM. Since ΔfbpA has been used in mice as a candidate vaccine and the DKO (ΔfbpAΔsapM) mutant is more immunogenic than ΔfbpA, we propose the DKO is a potential anti-tuberculosis vaccine.  相似文献   
992.
In mammals, many aspects of behavior and physiology such as sleep-wake cycles and liver metabolism are regulated by endogenous circadian clocks (reviewed1,2). The circadian time-keeping system is a hierarchical multi-oscillator network, with the central clock located in the suprachiasmatic nucleus (SCN) synchronizing and coordinating extra-SCN and peripheral clocks elsewhere1,2. Individual cells are the functional units for generation and maintenance of circadian rhythms3,4, and these oscillators of different tissue types in the organism share a remarkably similar biochemical negative feedback mechanism. However, due to interactions at the neuronal network level in the SCN and through rhythmic, systemic cues at the organismal level, circadian rhythms at the organismal level are not necessarily cell-autonomous5-7. Compared to traditional studies of locomotor activity in vivo and SCN explants ex vivo, cell-based in vitro assays allow for discovery of cell-autonomous circadian defects5,8. Strategically, cell-based models are more experimentally tractable for phenotypic characterization and rapid discovery of basic clock mechanisms5,8-13.Because circadian rhythms are dynamic, longitudinal measurements with high temporal resolution are needed to assess clock function. In recent years, real-time bioluminescence recording using firefly luciferase as a reporter has become a common technique for studying circadian rhythms in mammals14,15, as it allows for examination of the persistence and dynamics of molecular rhythms. To monitor cell-autonomous circadian rhythms of gene expression, luciferase reporters can be introduced into cells via transient transfection13,16,17 or stable transduction5,10,18,19. Here we describe a stable transduction protocol using lentivirus-mediated gene delivery. The lentiviral vector system is superior to traditional methods such as transient transfection and germline transmission because of its efficiency and versatility: it permits efficient delivery and stable integration into the host genome of both dividing and non-dividing cells20. Once a reporter cell line is established, the dynamics of clock function can be examined through bioluminescence recording. We first describe the generation of P(Per2)-dLuc reporter lines, and then present data from this and other circadian reporters. In these assays, 3T3 mouse fibroblasts and U2OS human osteosarcoma cells are used as cellular models. We also discuss various ways of using these clock models in circadian studies. Methods described here can be applied to a great variety of cell types to study the cellular and molecular basis of circadian clocks, and may prove useful in tackling problems in other biological systems.  相似文献   
993.
Though most of the studies have focused on the effects of free fatty acids on T-cell activation, fatty acids incorporated into plasma membrane phospholipids may also affect cell signaling via diacylglycerol (DAG), generally produced by phospholipid hydrolysis. In the present study, we have synthesized a DAG-containing oleic acid and studied its implication in the modulation of calcium signaling in human Jurkat T-cells. 1-palmitoyl-2-oleoyl-sn-glycerol (POG) induced a dose-dependent increase in [Ca2+]i. This effect was due to the presence of oleic acid at the sn-2 position as no differences were observed between POG and 1-stearoly-2-oleoyl-sn-glycerol (SOG). However, the substitution of oleic acid with arachidonic acid at the sn-2 position of the DAG moiety exerted a different response on the increases in [Ca2+]i in these cells. POG-evoked increases in [Ca2+]i were not due to its metabolites. Furthermore, POG-induced increases in [Ca2+]i were due to the opening of TRPC3/TRPC6 channels as silencing of TRPC3 and TRPC6 genes by shRNA abolished calcium entry. Moreover, disruption of lipid rafts with methyl-β-cyclodextrin completely abolished POG-evoked increases in [Ca2+]i. In conclusion, our results demonstrate that oleic acid can influence T-lymphocyte functions, in the conjugated form of DAG, via opening TRPC3/6 channels.  相似文献   
994.
995.
Pulmonary oedema is a life-threatening disease that requires special attention in the area of research and clinical diagnosis. Computer-based techniques are rarely used to quantify the intrathoracic fluid volume (IFV) for diagnostic purposes. This paper discusses a software program developed to detect and diagnose pulmonary oedema using LabVIEW. The software runs on anthropometric dimensions and physiological parameters, mainly transthoracic electrical impedance (TEI). This technique is accurate and faster than existing manual techniques. The LabVIEW software was used to compute the parameters required to quantify IFV. An equation relating per cent control and IFV was obtained. The results of predicted TEI and measured TEI were compared with previously reported data to validate the developed program. It was found that the predicted values of TEI obtained from the computer-based technique were much closer to the measured values of TEI. Six new subjects were enrolled to measure and predict transthoracic impedance and hence to quantify IFV. A similar difference was also observed in the measured and predicted values of TEI for the new subjects.  相似文献   
996.
Genetic diversity among rice genotypes, including 15 indica basmati advance lines and 5 basmati improved varieties were investigated by 28 SSR markers including one indel marker. The SSRs covered all the 12 chromosomes that distributed across the rice genomes. The mean number of alleles per locus was 3.60, showing average number of polymorphism information content was 0.48. A total of 101 alleles were also identified from the microsatellite marker loci. A number of SSR markers were also identified that could be utilized to differentiate between rice genotypes. Pair wise Nei’s genetic distance between rice genotypes ranged from 0.07 to 0.95. The dendrogram based on cluster analysis by using SSR polymorphism that grouped the 20 genotypes of rice in to five clusters based on their genetic similarity. The result could be useful for the identification and selection of the diverse genotypes for the future cross breeding program and development of new rice varieties.  相似文献   
997.
Withania somnifera, commonly known as ashwagandha or Indian ginseng, is a valuable medicinal plant, synthesizing a wide array of pharmacologically active secondary metabolites known as withanolides. In this study, we investigated variation among 54 regenerated plants attained through indirect organogenesis from leaf explants. Organogenic calli were induced on Murashige and Skoog medium containing 2?mg?l?1 kinetin and 1?mg?l?1 indole-3-butyric acid. High-performance liquid chromatography was used for quantitative determination of the major withanolides in the somaclones. One somaclone (WS-R-1) showed significantly higher accumulation of 12-deoxywithastramonolide (WS-12D; 0.516%) compared to the explant donor mother plant (0.002%). The incidence of somaclonal variation at the cytological level was investigated by studying mitosis and meiosis in relation to chromosome number and structural organization. There were no alterations in chromosome phenotypes, somatic chromosome count, or meiotic behavior. Fidelity at genomic level was evaluated by random amplification of polymorphic DNA (RAPD) analyses, which revealed multiple genetic polymorphisms between the WS-12D over-producing somaclone and the explant donor mother plant. This study demonstrates the capability of inducing chemotypic variability for the development of high-yielding clones due to molecular instability in W. somnifera using an in vitro approach.  相似文献   
998.
Abstract Background. Measurement of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) has recently become more popular as a means of assessing oxidative stress in the human body. The aim of this study is to compare the levels of urine 8-OHdG in patients with type 2 diabetes with and without nephropathy and to evaluate its role as a biochemical marker for distinguishing these patients from healthy and patients without complications. Methods. For this purpose, 52 patients with type 2 diabetes mellitus (32 with nephropathy (DMN), 20 without nephropathy (DM)) and 20 healthy control subjects (C) were included in this study. The urine concentrations of 8-OHdG were measured by modified LC-MS/MS method and compared with the first morning voiding urine albumin/creatinine ratio (UACR) and HbA1c values of the same patients. Results. The concentrations of urine 8-OHdG in DMN and DM patients were higher than those of the control subjects (3.47?±?0.94, 2.92?±?1.73, 2.1?±?0.93 nmol/mol creatinine, respectively). But there was no statistical difference between DMN and DM (p =?0.115). There is significant correlation between urinary 8-OHdG and UACR (r =?0.501, p 相似文献   
999.
Nitric oxide (NO), a small diffusible, ubiquitous bioactive molecule, acts as prooxidant as well as antioxidant, and also regulates remarkable spectrum of plant cellular mechanisms. The present work was undertaken to investigate the role of nitric oxide donor sodium nitroprusside (SNP) and/or calcium chloride (CaCl(2)) in the tolerance of excised mustard leaves to salt stress. After 24h, salt stressed leaves treated with SNP and/or CaCl(2), showed an improvement in the activities of carbonic anhydrase (CA) and nitrate reductase (NR), and leaf chlorophyll (Chl) content, leaf relative water content (LRWC) and leaf ion concentration as compared with the leaves treated with NaCl only. Salinity stress caused a significant increase in H(2)O(2) content and membrane damage which is witnessed by enhanced levels of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage. By contrast, such increases were blocked by the application of 0.2mM SNP and 10mM CaCl(2) to salt stressed leaves. Application of SNP and/or CaCl(2) alleviated NaCl stress by enhancing the activities of antioxidative enzymes viz. superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX) and glutathione reductase (GR) and by enhancing proline (Pro) and glycinebetaine (GB) accumulation with a concomitant decrease in H(2)O(2) content, TBARS and electrolyte leakage, which is manifested in the tolerance of plants to salinity stress. Moreover, application of SNP with CaCl(2) was more effective to reduce the detrimental effects of NaCl stress on excised mustard leaves. In addition to this, ameliorating effect of SNP was not effective in presence of NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide]. To put all these in a nut shell, the results advocate that SNP in association with CaCl(2) plays a role in enhancing the tolerance of plants to salt stress by improving antioxidative defence system, osmolyte accumulation and ionic homeostasis.  相似文献   
1000.
This study was designed to investigate whether the short-term extracorporeal shockwave lithotripsy (ESWL) exposure to kidney produces an oxidative stress and a change in some trace element levels in liver and diaphragm muscles of rats. Twelve male Wistar albino rats were divided randomly into two groups, each consisting of six rats. The animals in the first group did not receive any treatment and served as control group. The right-side kidneys of animals in group 2 were treated with two-thousand 18 kV shock waves while anesthetized with 50 mg kg(-1) ketamine. The localization of the right kidney was achieved after contrast medium injection through a tail vein under fluoroscopy control. The animals were killed 72 h after the ESWL treatment, and liver and diaphragm muscles were harvested for the determination of tissue oxidative stress and trace element levels. Although the malondialdehyde level increased, superoxide dismutase and glutathione peroxidase enzyme activities decreased in the livers and diaphragm muscles of ESWL-treated rats. Although glutathione level increased in liver, it decreased in diaphragm muscles of ESWL-treated animals. Fe, Mg and Mn levels decreased, and Cu and Pb levels increased in the livers of ESWL-treated animals. Fe and Cu levels increased, and Mg, Pb, Mn and Zn levels decreased in the diaphragm muscles of ESWL-treated animals. It also causes a decrease or increase in many mineral levels in liver and diaphragm muscles, which is an undesirable condition for the normal physiological function of tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号