首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1114篇
  免费   75篇
  2023年   14篇
  2022年   12篇
  2021年   37篇
  2020年   28篇
  2019年   39篇
  2018年   41篇
  2017年   26篇
  2016年   39篇
  2015年   47篇
  2014年   74篇
  2013年   69篇
  2012年   73篇
  2011年   88篇
  2010年   49篇
  2009年   34篇
  2008年   60篇
  2007年   53篇
  2006年   45篇
  2005年   43篇
  2004年   46篇
  2003年   41篇
  2002年   40篇
  2001年   24篇
  2000年   12篇
  1999年   15篇
  1998年   8篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1992年   17篇
  1991年   11篇
  1990年   8篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1189条查询结果,搜索用时 15 毫秒
1.
2.
The nucleating activity of the Arp2/3 complex promotes the assembly of branched actin filaments that drive plasma membrane protrusion in migrating cells. Arp2/3 complex binding to nucleation-promoting factors of the WASP and WAVE families was previously thought to be sufficient to increase nucleating activity. However, phosphorylation of the Arp2 subunit was recently shown to be necessary for Arp2/3 complex activity. We show in mammary carcinoma cells that mutant Arp2 lacking phosphorylation assembled with endogenous subunits and dominantly suppressed actin filament assembly and membrane protrusion. We also report that Nck-interacting kinase (NIK), a MAP4K4, binds and directly phosphorylates the Arp2 subunit, which increases the nucleating activity of the Arp2/3 complex. In cells, NIK kinase activity was necessary for increased Arp2 phosphorylation and plasma membrane protrusion in response to epidermal growth factor. NIK is the first kinase shown to phosphorylate and increase the activity of the Arp2/3 complex, and our findings suggest that it integrates growth factor regulation of actin filament dynamics.  相似文献   
3.
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.  相似文献   
4.
Pancreatic islet homogenates contain a Mg2+-requiring phospholipid methyltransferase activity, the activity of which was doubled by calcium (K0.5 less than 5 microM). Other divalent metal ions stimulated the activity from 11 to 35%, but zinc and strontium were inhibitory. Cyclic AMP had no effect on the enzyme activity and cyclic GMP inhibited it slightly. Calcium increased the Vmax of the enzyme without affecting its Km with respect to S-adenosylmethionine (6 microM). Chlorpromazine, trifluoperazine, and dibucaine inhibited the calcium-stimulatable activity without affecting the activity in the absence of calcium. Phosphatidylserine stimulated, and arachidonic acid and palmitic acid inhibited, the basal enzyme activity. The methylated products were found to be primarily mono- and dimethylphosphatidylethanolamine (30%) and phosphatidylcholine (43%) and an, as yet unidentified, nonpolar lipid fraction (27%), as judged by thin-layer chromatography. In the presence of calcium, incorporation of methyl groups into phosphatidylcholine, mono- and dimethylphosphatidylethanolamine, and nonpolar lipids was increased by 131, 60, and 46%, respectively. Based on the localization of the enzyme activity in the insulin secretory granule fraction, it is proposed that phospholipid methylation plays a role in coupling the stimulus to the initial events in insulin secretion, leading to the exocytosis of insulin.  相似文献   
5.
Carbon tetrachloride (CCl4) brings about a rise in cytosolic free calcium which may lead to glycogen mobilization. Therefore, glycogen and glucose-6-phosphatase (G-6-pase) levels in the liver of parathyroidectomized (PTX) rats following CCl4 treatment have been estimated. CCl4 depletes both glycogen and G-6-pase levels in the liver. PTX followed by CCl4 administration, however, fails to restore liver glycogen and G-6-pase levels. The results suggest that neither cytosolic Ca2+ nor phospholipase A2 mediation is needed for glycogen mobilization, however, glucocorticoid intervention might have a role in such mechanisms.  相似文献   
6.
We examined the effect of mimicry on how 16-month-old infants learn by observation a novel tool use action, which consisted of using a rake to retrieve a toy. Across four conditions, we manipulated whether during an initial play phase, an adult mimicked the infant''s play or not (testing the effect of mimicry), the infant played with the adult or played alone (controlling the effect of interacting with a contingent partner) and whether the infant saw a demonstration of the tool''s use or not (evaluating baseline performance). We found that infants who had been mimicked learned best from a demonstration of the rake''s use and performed better than infants who only played with the experimenter without mimicry or played by themselves before the demonstration. As expected, infants did not learn from a demonstration of the rake''s use when they played by themselves and thus had no previous interaction with an experimenter. The mechanisms driving this powerful learning effect of mimicry are discussed.  相似文献   
7.
Bengal Basin is known for severe arsenic contamination. In the present study, we have isolated six bacteria from the arsenic contaminated surface water of Bengal Basin. 16S rDNA sequence analysis identified them as Microbacterium oleivorans, Acinetobacter soli, Acinetobacter venetianus, Acinetobacter junii, Acinetobacter baumannii, Acinetobacter calcoaceticus. All the isolates possess arsenic accumulation potential and high molecular weight plasmid (>10 kb). PCR amplification indicated the presence of arsenic-resistance genes (arsB and aoxB) either in the genome or plasmid or in both in the isolated bacteria (except in Acinetobacter venetianus). Exposure to arsenic affected bacterial growth and induced alteration in cytoplasmic membrane integrity.  相似文献   
8.
Human parechoviruses are known to cause asymptomatic to severe clinical illness predominantly respiratory and gastroenetric infections. Despite their global prevalence, epidemiological studies have not been performed in Pakistan. In this study, we retrospectively analyzed 110 fecal specimen and found 26 (24%) positive for viral RNA with HPeV-10 (n = 3, 23%), HPeV-13 (n = 4, 31%) and HPeV-15 (n = 6, 46%) genotypes. Clinical features of patients with different HPeV genotypes were compared. All HPeV positive children were aged ≤4 years (mean 13.92 months). The male-to-female ratio was 1: 1.17 (46.2 vs 53.8%) with significant association (p = .031) to HPeV infectivity. HPeV-10 and -13 were found during summer while HPeV-15 was only detected during late winter season. Disease symptoms were more severe in children infected with HPeV-10 and -13 as compared to HPeV-15. Fever and vomiting were observed in 100% cases of HPeV-10 and -13 while only 17% patients of HPeV-15 had these complaints. Phylogenetic analyses showed that HPeV-10, -13 and -15 strains found in this study have 9–13%, 16.8% and 21.8% nucleotide divergence respectively from the prototype strains and were clustered to distinct genetic lineages. This is the first report of HPeV-15 infection in humans although first identified in rhesus macaques. The arginine-glycine-aspartic acid (RGD) motif present at the C-terminal of VP1 responsible for the viral attachment to cellular integrins was not found in all of these strains. In conclusion, these findings enhance our knowledge related to the epidemiology and genetic diversity of the HPeV in Pakistan and support the need for continued laboratory based surveillance programs especially in infants and neonatal clinical settings. Further, the parechovirus pathogenesis, cross-species transmission and disease reservoirs must be ascertained to adopt better prevention measures.  相似文献   
9.
Effects of exogenous prostaglandin A2 (PGA2) on DNA and RNA contents of the adrenal and renal tissues have been examined histochemically. Loss of DNA from the chromatin was observed in both the tissues; however, cells of the capsular regions showed normal cytochemical reactions. Stimulated reactions for RNA in both the tissues but with topographical differences signify the elevated functional capacity. Results further prove the proliferative nature of PGA2. Irregularities in the endogenous secretion of PGA2 and other hormones thus caused, seems to be responsible for these effects.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号