首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   46篇
  2021年   5篇
  2016年   3篇
  2015年   13篇
  2014年   12篇
  2013年   12篇
  2012年   13篇
  2011年   16篇
  2010年   10篇
  2009年   10篇
  2008年   9篇
  2007年   20篇
  2006年   17篇
  2005年   12篇
  2004年   13篇
  2003年   22篇
  2002年   12篇
  2001年   13篇
  2000年   16篇
  1999年   11篇
  1998年   8篇
  1996年   4篇
  1995年   3篇
  1994年   9篇
  1993年   5篇
  1992年   12篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   12篇
  1983年   5篇
  1982年   8篇
  1981年   14篇
  1979年   8篇
  1978年   7篇
  1977年   12篇
  1976年   5篇
  1975年   12篇
  1974年   3篇
  1973年   9篇
  1972年   8篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1957年   4篇
  1953年   2篇
排序方式: 共有476条查询结果,搜索用时 58 毫秒
41.
The C-terminal receptor-binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has been the target for the design of a vaccine effective against P. aeruginosa infections. We have recently cloned and expressed a (15)N-labeled PAK pilin peptide spanning residues 128-144 of the PAK pilin protein. The peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around a central Ile(138)-Pro(139) peptide bond. The trans isomer adopts two well-defined turns in solution, a type I beta-turn spanning Asp(134)-Glu-Gln-Phe(137) and a type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142). The cis isomer adopts only one well-defined type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142) but displays evidence of a less ordered turn spanning Asp(132)-Gln-Asp-Glu(135). These turns have been implicated in cross-reactive antibody recognition. (15)N NMR relaxation experiments of the (15)N-labeled recombinant PAK pilin peptide in complex with an Fab fragment of a cross-reactive monoclonal antibody, PAK-13, raised against the intact PAK pilus, were performed in order to probe for changes in the mobilities and dynamics of the peptide backbone as a result of antibody binding. The major results of these studies are as follows: binding of Fab leads to the preferential ordering of the first turn over the second turn in each isomer, binding of Fab partially stabilizes peptide backbone regions undergoing slow (microsecond to millisecond) exchange-related motions, and binding of Fab leads to a greater loss in backbone conformational entropy at pH 7.2 versus pH 4.5. The biological implications of these results will be discussed in relation to the role that fast and slow backbone motions play in PAK pilin peptide immunogenicity and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   
42.
The identification of the genes regulating neural progenitor cell (NPC) functions is of great importance to developmental neuroscience and neural repair. Previously, we combined genetic subtraction and microarray analysis to identify genes enriched in neural progenitor cultures. Here, we apply a strategy to further stratify the neural progenitor genes. In situ hybridization demonstrates expression in the central nervous system germinal zones of 54 clones so identified, making them highly relevant for study in brain and neural progenitor development. Using microarray analysis we find 73 genes enriched in three neural stem cell (NSC)-containing populations generated under different conditions. We use the custom microarray to identify 38 "stemness" genes, with enriched expression in the three NSC conditions and present in both embryonic stem cells and hematopoietic stem cells. However, comparison of expression profiles from these stem cell populations indicates that while there is shared gene expression, the amount of genetic overlap is no more than what would be expected by chance, indicating that different stem cells have largely different gene expression patterns. Taken together, these studies identify many genes not previously associated with neural progenitor cell biology and also provide a rational scheme for stratification of microarray data for functional analysis.  相似文献   
43.
It is well-known that micromolar to millimolar concentrations of cardiac glycosides inhibit Na/K pump activity, however, some early reports suggested nanomolar concentrations of these glycosides stimulate activity. These early reports were based on indirect measurements in multicellular preparations, hence, there was some uncertainty whether ion accumulation/depletion rather than pump stimulation caused the observations. Here, we utilize the whole-cell patch-clamp technique on isolated cardiac myocytes to directly measure Na/K pump current (I(P)) in conditions that minimize the possibility of ion accumulation/depletion causing the observed effects. In guinea pig ventricular myocytes, nanomolar concentrations of dihydro-ouabain (DHO) caused an outward current that appeared to be due to stimulation of I(P) because of the following: (1) it was absent in 0 mM [K(+)](o), as was I(P); (2) it was absent in 0 mM [Na(+)](i), as was I(P); (3) at reduced [Na(+)](i), the outward current was reduced in proportion to the reduction in I(P); (4) it was eliminated by intracellular vanadate, as was I(P). Our previous work suggested guinea pig ventricular myocytes coexpress the alpha(1)- and alpha(2)-isoforms of the Na/K pumps. The stimulation of I(P) appears to be through stimulation of the high glycoside affinity alpha(2)-isoform and not the alpha(1)-isoform because of the following: (1) regulatory signals that specifically increased activity of the alpha(2)-isoform increased the amplitude of the stimulation; (2) regulatory signals that specifically altered the activity of the alpha(1)-isoform did not affect the stimulation; (3) changes in [K(+)](o) that affected activity of the alpha(1)-isoform, but not the alpha(2)-isoform, did not affect the stimulation; (4) myocytes from one group of guinea pigs expressed the alpha(1)-isoform but not the alpha(2)-isoform, and these myocytes did not show the stimulation. At 10 nM DHO, total I(P) increased by 35 +/- 10% (mean +/- SD, n = 18). If one accepts the hypothesis that this increase is due to stimulation of just the alpha(2)-isoform, then activity of the alpha(2)-isoform increased by 107 +/- 30%. In the guinea pig myocytes, nanomolar ouabain as well as DHO stimulated the alpha(2)-isoform, but both the stimulatory and inhibitory concentrations of ouabain were approximately 10-fold lower than those for DHO. Stimulation of I(P) by nanomolar DHO was observed in canine atrial and ventricular myocytes, which express the alpha(1)- and alpha(3)-isoforms of the Na/K pumps, suggesting the other high glycoside affinity isoform (the alpha(3)-isoform) also was stimulated by nanomolar concentrations of DHO. Human atrial and ventricular myocytes express all three isoforms, but isoform affinity for glycosides is too similar to separate their activity. Nevertheless, nanomolar DHO caused a stimulation of I(P) that was very similar to that seen in other species. Thus, in all species studied, nanomolar DHO caused stimulation of I(P), and where the contributions of the high glycoside affinity alpha(2)- and alpha(3)-isoforms could be separated from that of the alpha(1)-isoform, it was only the high glycoside affinity isoform that was stimulated. These observations support early reports that nanomolar concentrations of glycosides stimulate Na/K pump activity, and suggest a novel mechanism of isoform-specific regulation of I(P) in heart by nanomolar concentrations of endogenous ouabain-like molecules.  相似文献   
44.
Protective immunity against Mycobacterium tuberculosis involves major histocompatibility complex class I (MHC-I)- and CD1-restricted CD8 T cells, but the mechanisms underlying antigen delivery to antigen-presenting molecules remain enigmatic. Macrophages, the primary host cells for mycobacteria, are CD1-negative. Here we show that M. tuberculosis phagosomes are secluded from the cytosolic MHC-I processing pathway and that mycobacteria-infected cells lose their antigen-presenting capacity. We also show that mycobacteria induce apoptosis in macrophages, causing the release of apoptotic vesicles that carry mycobacterial antigens to uninfected antigen-presenting cells (APCs). Inhibition of apoptosis reduced transfer of antigens to bystander cells and activation of CD8 T cells. Uninfected dendritic cells, which engulfed extracellular vesicles, were indispensable for subsequent cross-presentation of antigens, through MHC-I and CD1b, to T cells from mycobacteria-sensitized donors. This new 'detour' pathway for presentation of antigens from a phagosome-contained pathogen shows the functional significance of infection-induced apoptosis in the activation of CD8 T cells specific for both protein and glycolipid antigens in tuberculosis.  相似文献   
45.
46.
Granulysin, a T cell product, kills bacteria by altering membrane permeability   总被引:12,自引:0,他引:12  
Granulysin, a protein located in the acidic granules of human NK cells and cytotoxic T cells, has antimicrobial activity against a broad spectrum of microbial pathogens. A predicted model generated from the nuclear magnetic resonance structure of a related protein, NK lysin, suggested that granulysin contains a four alpha helical bundle motif, with the alpha helices enriched for positively charged amino acids, including arginine and lysine residues. Denaturation of the polypeptide reduced the alpha helical content from 49 to 18% resulted in complete inhibition of antimicrobial activity. Chemical modification of the arginine, but not the lysine, residues also blocked the antimicrobial activity and interfered with the ability of granulysin to adhere to Escherichia coli and Mycobacterium tuberculosis. Granulysin increased the permeability of bacterial membranes, as judged by its ability to allow access of cytosolic ss-galactosidase to its impermeant substrate. By electron microscopy, granulysin triggered fluid accumulation in the periplasm of M. tuberculosis, consistent with osmotic perturbation. These data suggest that the ability of granulysin to kill microbial pathogens is dependent on direct interaction with the microbial cell wall and/or membrane, leading to increased permeability and lysis.  相似文献   
47.
alpha(2)-Macroglobulin (alpha(2)M) functions as a proteinase inhibitor and as a carrier of diverse growth factors. In this study, we localized binding sites for platelet-derived growth factor-BB (PDGF-BB) and nerve growth factor-beta (NGF-beta) to a linear sequence in the 180-kDa human alpha(2)M subunit which includes amino acids 591-774. A glutathione S-transferase fusion protein containing amino acids 591-774 (FP3) bound PDGF-BB and NGF-beta in ligand blotting assays whereas five other fusion proteins, which collectively include amino acids 99-590 and 775-1451 did not. The K(D) values for PDGF-BB and NGF-beta binding to immobilized FP3 were 300 +/- 40 and 180 +/- 30 nM, respectively; these values were comparable with those determined using methylamine-modified alpha(2)M, suggesting that higher-order alpha(2)M structure is not necessary for PDGF-BB and NGF-beta binding. PDGF-BB and NGF-beta blocked the binding of transforming growth factor-beta1 (TGF-beta1) to FP3. Furthermore, murinoglobulin, which is the only known member of the alpha-macroglobulin family that does not bind TGF-beta, also failed to bind PDGF-BB and NGF-beta. These results support the hypothesis that either a single linear sequence in human alpha(2)M or overlapping sequences are responsible for the binding of TGF-beta, PDGF-BB, and NGF-beta, even though there is minimal sequence identity between these three growth factors. FP3 blocked the binding of PDGF-BB to a purified chimeric protein, in which the extracellular domain of the PDGF beta receptor was fused to the IgG(1) Fc domain, and to PDGF receptors on NIH 3T3 cells. Thus, FP3 may inhibit the activity of PDGF-BB.  相似文献   
48.
Campbell AP  Wong WY  Irvin RT  Sykes BD 《Biochemistry》2000,39(48):14847-14864
The C-terminal receptor binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has been the target for the design of a vaccine effective against P. aeruginosa infections. We have recently cloned and expressed a (15)N-labeled PAK pilin peptide spanning residues 128-144 of the PAK pilin protein. The peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around a central Ile(138)-Pro(139) peptide bond. The trans isomer adopts two well-defined turns in solution, a type I beta-turn spanning Asp(134)-Glu-Gln-Phe(137) and a type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142). The cis isomer adopts only one well-defined type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142) but displays evidence of a less ordered turn spanning Asp(132)-Gln-Asp-Glu(135). These turns have been implicated in cross-reactive antibody recognition. (15)N-edited NMR spectroscopy was used to study the binding of the (15)N-labeled PAK pilin peptide to an Fab fragment of a cross-reactive monoclonal antibody, PAK-13, raised against the intact PAK pilus. The results of these studies are as follows: the trans and cis isomers bind with similar affinity to the Fab, despite their different topologies; both isomers maintain the conformational integrity of their beta-turns when bound; binding leads to the preferential stabilization of the first turn over the second turn in each isomer; and binding leads to the perturbation of resonances within regions of the trans and cis backbone that undergo microsecond to millisecond motions. These slow motions may play a role in induced fit binding of the first turn to Fab PAK-13, which would allow the same antibody combining site to accommodate either trans or cis topology. More importantly for vaccine design, these motions may also play a role in the development of a broad-spectrum vaccine capable of generating an antibody therapeutic effective against the multiple strains of P. aeruginosa.  相似文献   
49.
Pokeweed antiviral protein II (PAP-II) is a naturally occurring protein isolated from early summer leaves of the pokeweed plant (Phytolacca americana). PAP-II belongs to a family of ribosome-inactivating proteins which catalytically deadenylate ribosomal and viral RNA. The chemical modification of PAP-II by reductive methylation of its lysine residues significantly improved the crystal quality for X-ray diffraction studies. Hexagonal crystals of the modified PAP-II, with unit cell parameters a = b = 92.51 A, c = 79.05 A, were obtained using 1.8 M Na/K phosphate as the precipitant. These crystals contained one enzyme molecule per asymmetric unit and diffracted up to 2.4 A, when exposed to a synchroton source.  相似文献   
50.
Fibers of pilin monomers (pili) form the dominant adhesin of Pseudomonas aeruginosa, and they play an important role in infections by this opportunistic bacterial pathogen. Blocking adhesion is therefore a target for vaccine development. The receptor-binding site is located in a C-terminal disulphide-bonded loop of each pilin monomer, but functional binding sites are displayed only at the tip of the pilus. A factor complicating vaccination is that different bacterial strains produce distinct, and sometimes highly divergent, pilin variants. It is surprising that all strains still appear to bind a common receptor, asialo-GM1. Here, we present the 1.63 A crystal structure of pilin from P. aeruginosa strain PAK. The structure shows that the proposed receptor-binding site is formed by two beta-turns that create a surface dominated by main-chain atoms. Receptor specificity could therefore be maintained, whilst allowing side-chain variation, if the main-chain conformation is conserved. The location of the binding site relative to the proposed packing of the pilus fiber raises new issues and suggests that the current fiber model may have to be reconsidered. Finally, the structure of the C-terminal disulphide-bonded loop will provide the template for the structure-based design of a consensus sequence vaccine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号