首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Alpha2-macroglobulin (alpha2M) is a major carrier of transforming growth factor-beta (TGF-beta) in vitro and in vivo. By screening glutathione S-transferase (GST) fusion proteins with overlapping sequences, we localized the TGFbeta-binding site to aa 700-738 of the mature human alpha2M subunit. In separate experiments, we screened overlapping synthetic peptides corresponding to aa 696-777 of alpha2M and identified a single 16-mer (718-733) that binds TGF-beta1. Platelet-derived growth factor-BB (PDGF-BB) bound to the same peptide, even though TGF-beta and PDGF-BB share almost no sequence identity. The sequence of the growth factor-binding peptide, WDLVVVNSAGVAEVGV, included a high proportion of hydrophobic amino acids. The analogous peptide from murinoglobulin, a human alpha2M homologue that does not bind growth factors, contained only three nonconservative amino acid substitutions; however, the MUG peptide failed to bind TGF-beta1 and PDGF-BB. These results demonstrate that a distinct and highly-restricted site in alpha2M, positioned near the C-terminal flank of the bait region, mediates growth factor binding. At least part of the growth factor-binding site is encoded by exon 18 of the alpha2M gene, which is notable for a 5' splice site polymorphism that has been implicated in Alzheimer's Disease.  相似文献   

2.
alpha(2)-Macroglobulin (alpha(2)M) binds transforming growth factor-beta1 (TGF-beta1) and TGF-beta2, forcing these growth factors into a state of latency. The mechanism by which this occurs remains unclear. In this paper, we demonstrate that peptides, derived from the structure of human alpha(2)M (amino acids 714-729), bind directly to TGF-beta1 and block the binding of TGF-beta1 to the type I and II TGF-beta receptors. The alpha(2)M-derived peptides are notable for hydrophobic tripeptide sequences (WIW or VVV) and acidic residues (Glu(714) and Asp(719) in the mature alpha(2)M subunit), which may function analogously to the structural elements that mediate TGF-beta-binding in the type II receptor. Mutating Glu(714) and Asp(719) in the alpha(2)M-peptide-GST fusion protein, FP3, which contains the putative growth factor-binding site, significantly decreased the binding affinity of FP3 for TGF-beta1. The alpha(2)M-derived peptides, which bind TGF-beta1, inhibited the interaction of TGF-beta1 with its receptors in fetal bovine heart endothelial cells. The same peptides also inhibited the activity of TGF-beta1 in endothelial cell proliferation assays. These results demonstrate that alpha(2)M-derived peptides target the receptor-binding sequence in TGF-beta.  相似文献   

3.
Transforming growth factor-beta 1 (TGF-beta 1) is a potent growth inhibitor for many cell types. On fibroblasts, TGF-beta 1 has been shown to inhibit human platelet-derived growth factor (PDGF)-induced mitogenicity. The mechanism implicated in this growth inhibition is unknown. In this work, we show on human bone marrow fibroblasts that TGF-beta 1, which inhibited PDGF-BB mitogenicity, was able to block PDGF-BB-induced early events such as polyphosphoinositide (PtdIns 4,5-P2, PtdIns 4-P, and PtdIns) breakdown and Ins 1,4,5-P3 formation. No significant modification by TGF-beta 1 of PDGF-BB binding (n1 = 200,000 vs. n2 = 195,000 sites per cell with TGF-beta 1; Kd1 = Kd2 = 0.5 x 10(-9) M) and of internalization kinetics was observed. In addition, TGF-beta 1 was shown to inhibit PDGF-BB receptor autophosphorylation either in intact cells or in partially isolated membranes and to partially inhibit PDGF-R tyrosine kinase activity. Since a dephosphorylation mechanism through protein phosphatases could be implicated, we used okadaic acid, a potent inhibitor of type 1 and 2A serine/threonine phosphatases and showed that okadaic acid restored PDGF-receptor autophosphorylation on tyrosine residues. Based on these data, we suggest that an alternative regulatory mechanism of PDGF tyrosine phosphorylation seems to involve serine/threonine phosphatase activation.  相似文献   

4.
alpha2-Macroglobulin (alpha2M) inhibits diverse extracellular proteases, binds growth factors such as platelet-derived growth factor-BB (PDGF-BB) and transforming growth factor-beta1 (TGF-beta1), and carries beta-amyloid peptide. alpha2M may also trigger cell signaling by binding to the low density lipoprotein receptor-related protein (LRP-1) and/or other cell surface receptors. Based on studies with recombinant alpha2M fragments expressed in bacteria and synthetic peptides, we previously localized a growth factor-binding site near the center of the alpha2M subunit. However, because intact alpha2M forms a hollow cylinder structure, an alternative model for growth factor binding involves nonspecific entrapment within the alpha2M core. To distinguish between these two models, we engineered mutations in the putative growth factor binding sequence of full-length alpha2M. These mutations did not perturb the tetrameric structure of alpha2M, reaction with proteases, the thiol ester bonds, or binding to LRP-1. A single mutation (E730R) completely blocked binding of platelet-derived growth factor-BB to intact alpha2M. E730R did not alter TGF-beta1 binding; however, this mutation in combination with mutations at Glu714 and Asp719 eliminated the increase in TGF-beta1 binding associated with alpha2M conformational change. These studies demonstrate that growth factor binding to intact alpha2M is specific, involving a defined region of the alpha2M subunit. The exact sequences required for binding different growth factors may be non-identical, mimicking the model of the bait region in which different proteases target adjacent and sometimes overlapping sequences.  相似文献   

5.
The mechanism by which the platelet-derived growth factor (PDGF)-binding protein, alpha 2-macroglobulin (alpha 2M), modulates PDGF bioactivity is unknown, but could involve reversible PDGF-alpha 2M binding. Herein we report that greater than 70% of 125I-PDGF-BB or -AB complexed to alpha 2M was dissociated by SDS-denaturation followed by SDS-polyacrylamide gel electrophoresis, i.e. most of the binding was noncovalent. Reduction of the PDGF.alpha 2M complex following denaturation dissociated the cytokine from alpha 2M by greater than 90%, suggesting covalent disulfide bond formation. Approximately 50% of the growth factor was dissociated by lowering the pH from 7.5 to 4.0. 125I-PDGF-BB bound alpha 2M in a time-dependent manner (t1/2 = approximately 1 h), reaching equilibrium after 4 h. The 125I-PDGF.BB/alpha 2M complex dissociated more slowly (t1/2 = approximately 2.5 h). "Slow" and "fast" alpha 2M bound nearly equal amounts of PDGF-AB or -BB. Trypsin treatment converted PDGF-BB/alpha 2M complex to the fast conformation but did not release bound 125I-PDGF-BB. All PDGF-isoforms (AA, -AB, and -BB) competed for binding with 125I-PDGF-BB binding to slow alpha 2M and fast alpha 2M-methylamine by 65-80%. Other cytokines that bind alpha 2M (transforming growth factor-beta 1 and -beta 2, tumor necrosis factor-alpha, basic fibroblast growth factor, interleukin -1 beta, and -6) did not compete for 125I-PDGF-BB binding slow alpha 2M, but transforming growth factor-beta 1 and basic fibroblast growth factor inhibited 125I-PDGF-BB binding alpha 2M-methylamine by 30-50%. The reversible nature of the PDGF.alpha 2M complex could allow for targeted PDGF release near mesenchymal cells which possess PDGF receptors.  相似文献   

6.
The biological activities of transforming growth factor-beta isoforms (TGF-beta(1,2)) are known to be modulated by alpha(2)-macroglobulin (alpha(2)M). alpha(2)M forms complexes with numerous growth factors, cytokines, and hormones, including TGF-beta. Identification of the binding sites in TGF-beta isoforms responsible for high affinity interaction with alpha(2)M many unravel the molecular basis of the complex formation. Here we demonstrate that among nine synthetic pentacosapeptides with overlapping amino acid sequences spanning the entire TGF-beta(1) molecule, the peptide (residues 41-65) containing Trp-52 exhibited the most potent activity in inhibiting the formation of complexes between (125)I-TGF-beta(1) and activated alpha(2)M (alpha(2)M*) as determined by nondenaturing polyacrylamide gel electrophoresis and by plasma clearance in mice. TGF-beta(2) peptide containing the homologous sequence and Trp-52 was as active as the TGF-beta(1) peptide, whereas the corresponding TGF-beta(3) peptide lacking Trp-52, was inactive. The replacement of the Trp-52 with alanine abolished the inhibitory activities of these peptides. (125)I-TGF-beta(3), which lacks Trp-52, bound to alpha(2)M* with an affinity lower than that of (125)I-TGF-beta(1). Furthermore, unlabeled TGF-beta(3) and the mutant TGF-beta(1)W52A, in which Trp-52 was replaced with alanine, were less potent than unlabeled TGF-beta(1) in blocking I(125)-TGF-beta(1) binding to alpha(2)M*. TGF-beta(1) and TGF-beta(2) peptides containing Trp-52 were also effective in inhibiting I(125)-nerve growth factor binding to alpha(2)M*. Tauhese results suggest that Trp-52 is involved in high affinity binding of TGF-beta to alpha(2)M*. They also imply that TGF-beta and other growth factors/cytokines/hormones may form complexes with alpha(2)M* via a common mechanism involving the interactions between topologically exposed Trp and/or other hydrophobic residues and a hydrophobic region in alpha(2)M*.  相似文献   

7.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time.  相似文献   

8.
The binding of three radiolabeled isoforms of platelet-derived growth factor (PDGF), 125I-PDGF-AA, 125I-PDGF-AB, and 125I-PDGF-BB, is differentially affected by exposure of quiescent 3T3 cells to transforming growth factor-beta (TGF-beta). By 24 h after exposure to TGF-beta, binding of 125I-PDGF-AA and 125I-PDGF-AB is almost completely lost, whereas binding of 125I-PDGF-BB is reduced by only 40%. The loss of PDGF-binding sites caused by TGF-beta is time- and concentration-dependent and reflects a change in the pattern of expression of receptor subunits; the number of alpha-subunits decreases, and the number of beta-subunits increases. The loss of binding sites for PDGF-AA is accompanied by a decreased mitogenic response to PDGF-AA but not to PDGF-AB or PDGF-BB. These results suggest that TGF-beta may differentially regulate the expression of PDGF-binding sites and the mitogenic responsiveness toward the three PDGF isoforms. TGF-beta did not stimulate synthesis of PDGF A-chain mRNA or PDGF-AA protein, and PDGF-AA receptors could not be restored by the presence of suramin, suggesting that the loss of binding sites may result from direct effects on receptor expression rather than autocrine down-regulation by PDGF-AA.  相似文献   

9.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M.  相似文献   

10.
alpha(2)-Macroglobulin (alpha(2)M) is a plasma protease inhibitor, which reversibly binds growth factors and, in its activated form, binds to low density lipoprotein receptor-related protein (LRP-1), an endocytic receptor with cell signaling activity. Because distinct domains in alpha(2)M are responsible for its various functions, we hypothesized that the overall effects of alpha(2)M on cell physiology reflect the integrated activities of multiple domains, some of which may be antagonistic. To test this hypothesis, we expressed the growth factor carrier site and the LRP-1 recognition domain (RBD) as separate GST fusion proteins (FP3 and FP6, respectively). FP6 rapidly and robustly activated Akt and ERK/MAP kinase in Schwann cells and PC12 cells. This response was blocked by LRP-1 gene silencing or by co-incubation with the LRP-1 antagonist, receptor-associated protein. The activity of FP6 also was blocked by mutating Lys(1370) and Lys(1374), which precludes LRP-1 binding. FP3 blocked activation of Akt and ERK/MAP kinase in response to nerve growth factor-beta (NGF-beta) but not FP6. In PC12 cells, FP6 promoted neurite outgrowth and expression of growth-associated protein-43, whereas FP3 antagonized the same responses when NGF-beta was added. The ability of FP6 to trigger LRP-1-dependent cell signaling in PC12 cells was reproduced by the 18-kDa RBD, isolated from plasma-purified alpha(2)M by proteolysis and chromatography. We propose that the effects of intact alpha(2)M on cell physiology reflect the degree of penetration of activities associated with different domains, such as FP3 and FP6, which may be regulated asynchronously by conformational change and by other regulatory proteins in the cellular microenvironment.  相似文献   

11.
Transforming growth factor-beta 1 binds to immobilized fibronectin   总被引:8,自引:0,他引:8  
We have characterized the interaction of homodimeric porcine transforming growth factor-beta 1 (TGF-beta 1) with affinity-purified human plasma fibronectin. Using a solid-phase binding assay, we have demonstrated that TGF-beta 1 binds to fibronectin immobilized on Immunlon ITM microtiter plates. TGF-beta 1 binding increased with time, reaching a plateau after 4-6 h, and was dependent upon the concentration of both labeled TGF-beta 1 and immobilized fibronectin present. The binding of radiolabeled TGF-beta 1 to fibronectin was saturable and was reduced 75% in the presence of a 100-fold excess of unlabeled TGF-beta 1. TGF-beta 1 bound to fibronectin with an association rate constant (Ka) of 2.96 x 10(3) M-1 s-1 and did not readily dissociate under various conditions. The binding of TGF-beta 1 to fibronectin was insensitive to variations in ionic strength over a range of 0.1-1.0 M NaCl and was relatively insensitive to divalent cation concentration in the range of 0.1-10.0 mM as well. These data suggest that the binding of TGF-beta 1 to fibronectin may not be dependent upon the interaction of charged amino acids within these two molecules. However, the binding of TGF-beta 1 to fibronectin was strongly pH-dependent and binding decreased dramatically below pH 4.0 and above pH 10.0, suggesting that charged amino acids may influence TGF-beta 1/fibronectin interactions. The association of TGF-beta 1 with immobilized fibronectin or other extracellular matrix components and subsequent dissociation under acidic conditions or by an as-yet-unidentified mechanism may play a role in the distribution and/or activity of this potent growth regulator at sites of tissue injury and inflammation in vivo.  相似文献   

12.
A novel transforming growth factor-beta (TGF-beta) mRNA of about 3.0 kilobases, which encodes a putative protein of 382 amino acids, has been identified in amphibians by cDNA cloning. This mRNA, which we designate as TGF-beta 5, is developmentally regulated and highly expressed beginning at early neurula (stage 14) and in many adult tissues in Xenopus laevis. Following the first methionine, the putative precursor protein has a hydrophobic region, approximately 22 amino acids long, which probably represents a signal sequence, similar to that found in TGF-beta s 1-3. The precursor also has potential sites for glycosylation, integrin binding (RGD), and a tetrabasic amino acid (RKKR) site for potential cleavage of the precursor peptide to a biologically active protein. The putative mature protein consists of 112 amino acids with 9 cysteines and has 76, 66, 69, and 72% identity to TGF-beta s 1-4, respectively.  相似文献   

13.
Native alpha 2-macroglobulin (alpha 2M) and alpha 2M-methylamine were immobilized in 96-well microtiter plates. 125I-labeled transforming growth factor-beta 1 (TGF-beta 1) bound to both alpha 2M variants; however, greater binding was observed with alpha 2M-methylamine. Binding of 125I-TGF-beta 1 (0.2 nM) to immobilized alpha 2M-methylamine was inhibited by nonradiolabeled TGF-beta 1 (up to 74% with 0.4 microM TGF-beta 1). Approximately 10% of the TGF-beta 1-alpha 2M-methylamine complex was covalent. Treatment of alpha 2M-methylamine with iodoacetamide prior to immobilization completely eliminated covalent TGF-beta 1 binding; the total amount of 125I-TGF-beta 1-alpha 2M-methylamine complex detected was unchanged. The binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was not significantly inhibited by increasing the ionic strength to 1.0 M. Binding and complex dissociation were also unaffected by changes in pH within the range 6.9-8.9. Acidic pH dramatically decreased binding and promoted complex dissociation; no binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine was detected at pH 3.5. The interaction of TGF-beta 1 with immobilized alpha 2M-methylamine was not significantly changed by 1.0 mM EDTA or 1.0 mM CaCl2. ZnCl2 (1.0 mM) completely eliminated binding. This result was not due to TGF-beta 1 precipitation or aggregation. Inhibition of 125I-TGF-beta 1 binding to alpha 2M-methylamine was 50% complete (IC50) with 30 microM ZnCl2. Native alpha 2M, thrombospondin, and alpha 2M-methylamine (in solution) decreased binding of 125I-TGF-beta 1 to immobilized alpha 2M-methylamine. The IC50 values for these three proteins were 520, 160, and 79 nM, respectively. The TGF-beta 1-binding activity of native alpha 2M may have reflected, at least in part, trace-contamination with alpha 2M-proteinase complex.  相似文献   

14.
Bone-marrow-derived mesenchymal stem cells (MSCs) can differentiate into a variety of cell types including smooth muscle cells (SMCs). We have attempted to demonstrate that, following treatment with transforming growth factor-beta 1 (TGF-beta1) and ascorbic acid (AA), human bone-marrow-derived MSCs differentiate into the SMC lineage for use in tissue engineering. Quantitative polymerase chain reaction for SMC-specific gene (alpha smooth muscle actin, h1-calponin, and SM22alpha) expression was performed on MSCs, which were cultured with various concentrations of TGF-beta1 or AA. TGF-beta1 had a tendency to up-regulate the expression of SMC-specific genes in a dose-dependent manner. The expression of SM22alpha was significantly up-regulated by 30 muM AA. We also investigated the additive effect of TGF-beta1 and AA for differentiation into SMCs and compared this effect with that of other factors including platelet-derived growth factor BB (PDGF-BB). In addition to SMC-specific gene expression, SMC-specific proteins increased by two to four times when TGF-beta1 and AA were used together compared with their administration alone. PDGF did not increase the expression of SMC-specific markers. MSCs cultured with TGF-beta1 and AA did not differentiate into osteoblasts and adipocytes. These results suggest that a combination of TGF-beta1 and AA is useful for the differentiation of MSCs into SMCs for use in tissue engineering.  相似文献   

15.
Binding of platelet-derived growth factor (PDGF) to its cell surface receptors stimulates a variety of biochemical and biological responses. Two receptor gene products (designated alpha and beta) have been identified, and the different binding affinities of various PDGF isoforms for these receptors are prime determinants of the spectrum of responses observed. The beta receptor binds PDGF-BB, but not PDGF-AA, while the alpha receptor binds PDGF-AA and PDGF-BB. We utilized these different ligand binding specificities to investigate the PDGF-AA binding site in the human alpha-PDGF receptor by constructing chimeric molecules between the human alpha- and beta-PDGF receptors. Our results demonstrate that amino acids 1-340 of the alpha-PDGF receptor comprise the region that confers PDGF-AA binding specificity. This region corresponds to immunoglobulin-like sub-domains 1, 2, and 3 of its external domain.  相似文献   

16.
Linear scleroderma (LS) is a localized form of scleroderma characterized by mononuclear cell infiltration and fibroblast proliferation. In the later stages of the disease, excessive collagen is deposited with concomitant skin and appendage atrophy. These symptoms suggest a breakdown of fibroblast cell function, and consequently, growth factors have been thought to play a role in the pathogenesis of LS. The present study examined the expression of TGF-beta and PDGF in skin biopsies obtained from patients with LS and from normal subjects. Samples were prepared for immunohistochemistry. To identify TGF-beta, two polyclonal antibodies were used: TGF-beta1 (RaB4) and TGF-beta2 (CL-B1/29) and, to identify PDGF, two monoclonal antibodies were used: PDGF-AA (3E-205) and PDGF-BB (1F-133). Staining for TGF-beta1 and TGF-beta2 was observed around blood vessels (endothelial cells), and sweat glands in both LS and normal skin. Staining for PDGF-AA and PDGF-BB was intense in endothelial cells and sweat glands in LS and normal skin. Mononuclear cell infiltrates and abnormal collagen bundles did not stain for TGF-beta or PDGF. The strength and extent of staining was evaluated in tissues using a scale from zero (no staining) to four (strong staining). The amount of TGF-beta1, TGF-beta2, PDGF-AA and PDGF-BB was found similar in LS and normal skin. These results do not support the hypothesis that the excessive fibroblast cell activity and abnormal collagen deposition observed in LS are associated with downregulation of TGF-beta or PDGF.  相似文献   

17.
Platelet-derived growth factor (PDGF) and transforming growth factor beta (TGF-beta), potent modulators of mesenchymal cell growth and differentiation, are often colocalizable in vivo. Previous in vitro studies in fibroblastic cell lines have shown variable, even antagonistic effects of TGF-beta on the mitogenic action of PDGF. This study demonstrates that in diploid human dermal fibroblasts, TGF-beta 1 is weakly mitogenic in the absence of serum or purified growth factors, and that TGF-beta 1 potentiates DNA synthesis in PDGF-stimulated fibroblasts with delayed kinetics when compared to stimulation with PDGF alone. TGF-beta 1 enhances mitogenic potency of all three PDGF isoforms and increases receptor binding of both 125I PDGF-AA and 125I PDGF-BB, consistent with the increased expression of the alpha type PDGF receptor. The induction of PDGF alpha receptor subunits by TGF-beta may play a role in enhancing the proliferative potential of human fibroblasts in certain physiologic and pathologic conditions.  相似文献   

18.
We have examined the ability of transforming growth factor-beta 1 (TGF-beta 1) and platelet-derived growth factor-BB (PDGF-BB) to regulate the expression of various integrins in cultured rabbit vascular smooth muscle cells (SMC). We found that expression of the alpha v beta 3 integrin complex was induced by both growth factors, although TGF-beta 1 appeared to be the more potent inducer. mRNA level of the beta 3 integrin subunit was undetectable in quiescent cells and enhanced by both growth factors, while the alpha v integrin subunit mRNA level did not change with growth factor addition. Therefore, appearance of the alpha v beta 3 integrin protein complex after growth factor stimulation was due to increased expression of the beta 3 integrin subunit mRNA. The TGF-beta 1 induced increase in beta 3 integrin mRNA was delayed, but did not require prior protein synthesis, since cycloheximide was unable to block the increase in beta 3 mRNA level. By contrast, PDGF-BB induced a more rapid increase in beta 3 integrin mRNA level that peaked by 6 h after growth factor addition and no detectable beta 3 integrin mRNA remained after 24 h. Interestingly, the PDGF-BB induced elevation of beta 3 integrin, although more rapid, was completely inhibited by cycloheximide. Expression of the alpha 5 integrin subunit in response to growth factors was very similar to beta 3. However, in contrast to beta 3 and alpha 5, neither TGF-beta 1 nor PDGF-BB were able to alter the expression of the beta 1 integrin subunit in vascular SMC. However, in TGF-beta 1 treated cells, there was a large increase in expression of a 190 kDa polypeptide that was associated with the beta 1 integrin subunit. This 190 kDa polypeptide was not detected in PDGF treated SMC or in TGF-beta 1 treated fibroblasts. The alpha 1 integrin subunit has a MW of approximately 190 kDa and is capable of complexing with beta 1. Analysis of the alpha 1 integrin subunit mRNA level indicated that it was indeed induced by TGF-beta 1, but not by PDGF-BB, suggesting that the 190 kDa polypeptide may be the alpha 1 integrin subunit. These results indicate that TGF-beta 1 and PDGF-BB are potent but distinct activators of integrin expression in vascular SMC.  相似文献   

19.
20.
The biological latency of serum transforming growth factor-beta (TGF-beta) was shown to be due to the interaction of TGF-beta with a specific serum binding protein. This binding protein was affinity labeled with 125I-TGF-beta, and its Mr and subunit structure were determined using sodium dodecyl sulfate-gel electrophoresis and gel filtration chromatography. Its Mr is reminiscent of that of the serum protease inhibitor, alpha 2-macroglobulin (alpha 2M). Immunoprecipitation of the 125I-TGF-beta-binding protein complex by a specific anti-alpha 2M antibody, and the formation of identical complexes between 125I-TGF-beta and purified alpha 2M, confirmed that alpha 2M is the TGF-beta-binding protein in serum. Immunoblot analysis showed that endogenous serum TGF-beta is also bound to alpha 2M. However, in contrast to added 125I-TGF-beta, the majority of the endogenous TGF-beta is linked to alpha 2M covalently. Alpha 2M and acid-activated TGF-beta co-eluted from a Superose 6 fast protein liquid chromatography column, confirming that the interaction of TGF-beta with alpha 2M accounts for the latency of serum TGF-beta. It is proposed that alpha 2M may serve an important multifunctional role at sites of inflammation by scavenging both active peptides and proteases that are released by platelets at the site of injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号