首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3585篇
  免费   243篇
  国内免费   5篇
  2024年   2篇
  2023年   14篇
  2022年   26篇
  2021年   85篇
  2020年   37篇
  2019年   60篇
  2018年   90篇
  2017年   63篇
  2016年   111篇
  2015年   167篇
  2014年   190篇
  2013年   243篇
  2012年   303篇
  2011年   330篇
  2010年   203篇
  2009年   165篇
  2008年   231篇
  2007年   254篇
  2006年   254篇
  2005年   235篇
  2004年   209篇
  2003年   165篇
  2002年   195篇
  2001年   21篇
  2000年   7篇
  1999年   18篇
  1998年   28篇
  1997年   18篇
  1996年   17篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1988年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有3833条查询结果,搜索用时 296 毫秒
131.
132.
This study presents a site-resolved experimental view of backbone C(alpha)H and NH internal motions in the 56-residue immunoglobulin-binding domain of streptococcal protein G, GB1. Using (13)C(alpha)H and (15)NH NMR relaxation data [T(1), T(2), and NOE] acquired at three resonance frequencies ((1)H frequencies of 500, 600, and 800 MHz), spectral density functions were calculated as F(omega) = 2omegaJ(omega) to provide a model-independent way to visualize and analyze internal motional correlation time distributions for backbone groups in GB1. Line broadening in F(omega) curves indicates the presence of nanosecond time scale internal motions (0.8 to 5 nsec) for all C(alpha)H and NH groups. Deconvolution of F(omega) curves effectively separates overall tumbling and internal motional correlation time distributions to yield more accurate order parameters than determined by using standard model free approaches. Compared to NH groups, C(alpha)H internal motions are more broadly distributed on the nanosecond time scale, and larger C(alpha)H order parameters are related to correlated bond rotations for C(alpha)H fluctuations. Motional parameters for NH groups are more structurally correlated, with NH order parameters, for example, being larger for residues in more structured regions of beta-sheet and helix and generally smaller for residues in the loop and turns. This is most likely related to the observation that NH order parameters are correlated to hydrogen bonding. This study contributes to the general understanding of protein dynamics and exemplifies an alternative and easier way to analyze NMR relaxation data.  相似文献   
133.
In the context of the bacterial RuvABC system, RuvA protein binds to and is involved in the subsequent processing of a four-way DNA structure called Holliday junction that is formed during homologous recombination. Four crystal structures of RuvA from Escherichia coli (EcoRuvA) showed that it was tetrameric, while neutron scattering and two other crystal structures for RuvA from Mycobacterium leprae (MleRuvA) and EcoRuvA showed that it was an octamer. To clarify this discrepancy, sedimentation equilibrium experiments by analytical ultracentrifugation were carried out and the results showed that MleRuvA existed as a tetramer-octamer equilibrium between 0.2-0.5 mg/ml in 0.1 M NaCl with a dissociation constant of 4 muM, and is octameric at higher concentrations. The same experiments in 0.3 M NaCl showed that MleRuvA is a tetramer up to 3.5 mg/ml, indicating that salt bridges are involved in octamer formation. Sedimentation equilibrium experiments with EcoRuvA showed that it was tetrameric at low concentration in both salt buffers but the protein was insoluble at high-protein concentrations in 0.1 M NaCl. It is concluded that free RuvA exists in an equilibrium between tetrameric and octameric forms in the typical concentration range and buffer found in bacterial cells.  相似文献   
134.
Protein stability is usually characterized calorimetrically by a melting temperature and related thermodynamic parameters. Despite its importance, the microscopic origin of the melting transition and the relationship between thermodynamic stability and dynamics remains a mystery. Here, NMR relaxation parameters were acquired for backbone 15NH groups of the 56 residue immunoglobulin-binding domain of streptococcal protein G over a pre-denaturation temperature range of 5-50 degrees C. Relaxation data were analyzed using three methods: the standard three-Lorentzian model free approach; the F(omega)=2omegaJ(omega) spectral density approach that yields motional correlation time distributions, and a new approach that determines frequency-dependent order parameters. Regardless of the method of analysis, the temperature dependence of internal motional correlation times and order parameters is essentially the same. Nanosecond time-scale internal motions are found for all NHs in the protein, and their temperature dependence yields activation energies ranging up to about 33kJ/mol residue. NH motional barrier heights are structurally correlated, with the largest energy barriers being found for residues in the most "rigid" segments of the fold: beta-strands 1 and 4 and the alpha-helix. Trends in this landscape also parallel the free energy of folding-unfolding derived from hydrogen-deuterium (H-D) exchange measurements, indicating that the energetics for internal motions occurring on the nanosecond time-scale mirror those occurring on the much slower time-scale of H-D exchange. Residual heat capacities, derived from the temperature dependence of order parameters, range from near zero to near 100J/mol K residue and correlate with this energy landscape. These results provide a unique picture of this protein's energy landscape and a relationship between thermodynamic stability and dynamics that suggests thermosensitive regions in the fold that could initiate the melting process.  相似文献   
135.
The potential of different house-keeping genes for their use as internal standards of gene expression under changing environmental conditions and in different organs of plants was assessed. Using real-time PCR mRNA levels were precisely quantified for preselected actin and ribosomal protein genes in Arabidopsis thaliana (L.) Heinh. and Nicotiana tabacum L. grown at normal temperature and following heat stress. In tobacco leaves the mRNA levels of the constitutively expressed ribosomal protein gene Nt-L25 and the actin genes Nt-ACT9 and At-ACT66 were strongly reduced (to approximately 10%) during heat stress. Heat stress applied at the temperature optimum (37 degrees C) for elicitation of a heat stress response to Arabidopsis leaves resulted in a strong induction (several thousand-fold) of the mRNA heat shock protein genes, At-HSP17.6 and At-HSP18.2. Concomitantly, the mRNA levels of constitutively expressed actin 2 (At-ACT2) and ribosomal protein L23 (At-L23a) genes were reduced to approximately 50% of the levels in leaves incubated at room temperature. Conversely, under severe heat stress conditions (44 degrees C), the induction of At-HSP17.6 and At-HSP18.2 mRNAs was insignificant, the mRNA levels of At-ACT2 remained at approximately the same levels as in leaves incubated at room temperature, whereas the mRNA level of At-L23 declined. The mRNA levels of At-ACT2 and At-L23a examined in stem, flower and siliques of Arabidopsis plants grown under non-stress condition showed differential alterations; the mRNA level of ribosomal protein L23 correlates with the metabolic activity of tissues. The potential use of house-keeping gene expression as standards in expression profiling and the mechanisms modulating the mRNA levels are discussed.  相似文献   
136.
Hantaviruses infect human endothelial and immune cells, causing two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). We have identified key signaling elements termed immunoreceptor tyrosine-based activation motifs (ITAMs) within the G1 cytoplasmic tail of all HPS-causing hantaviruses. ITAMs direct receptor signaling within immune and endothelial cells and the presence of ITAMs in all HPS-causing hantaviruses provides a means for altering normal cellular responses which maintain vascular integrity. The NY-1 G1 ITAM was shown to coprecipitate a complex of phosphoproteins from cells, and the G1 ITAM is a substrate for the Src family kinase Fyn. The hantavirus ITAM coprecipitated Lyn, Syk, and ZAP-70 kinases from T or B cells, while mutagenesis of the ITAM abolished these interactions. In addition, G1 ITAM tyrosines directed intracellular interactions with Syk by mammalian two-hybrid analysis. These findings demonstrate that G1 ITAMs bind key cellular kinases that regulate immune and endothelial cell functions. There is currently no means for establishing the role of the G1 ITAM in hantavirus pathogenesis. However, the conservation of G1 ITAMs in all HPS-causing hantaviruses and the role of these signaling elements in immune and endothelial cells suggest that functional G1 ITAMs are likely to dysregulate normal immune and endothelial cell responses and contribute to hantavirus pathogenesis.  相似文献   
137.
138.
139.
The ubiquitin-related protein SUMO functions by becoming covalently attached to lysine residues in other proteins. Unlike ubiquitin, which is often linked to its substrates as a polyubiquitin chain, only one SUMO moiety is attached per modified site in most substrates. However, SUMO has recently been shown to form chains in vitro and in mammalian cells, with a lysine in the non-ubiquitin-like N-terminal extension serving as the major SUMO-SUMO branch site. To investigate the physiological function of SUMO chains, we generated Saccharomyces cerevisiae strains that expressed mutant SUMOs lacking various lysine residues. Otherwise wild-type strains lacking any of the nine lysines in SUMO were viable, had no obvious growth defects or stress sensitivities, and had SUMO conjugate patterns that did not differ dramatically from wild type. However, mutants lacking the SUMO-specific isopeptidase Ulp2 accumulated high molecular weight SUMO-containing species, which formed only when the N-terminal lysines of SUMO were present, suggesting that they contained SUMO chains. Furthermore SUMO branch-site mutants suppressed several of the phenotypes of ulp2delta, consistent with the possibility that some ulp2delta phenotypes are caused by accumulation of SUMO chains. We also found that a mutant SUMO whose non-ubiquitin-like N-terminal domain had been entirely deleted still carried out all the essential functions of SUMO. Thus, the ubiquitin-like domain of SUMO is sufficient for conjugation and all downstream functions required for yeast viability. Our data suggest that SUMO can form chains in vivo in yeast but demonstrate conclusively that chain formation is not required for the essential functions of SUMO in S. cerevisiae.  相似文献   
140.
The mammalian ATM/PI 3-kinase-related TRRAP protein was previously found to be a component of a multi-protein histone acetyltransferase (HAT) complex containing the HAT TIP60. In this report, we identify a previously uncharacterized protein encoded by the FLJ10914 ORF, which we designate MRGBP, as a new component of the TRRAP/TIP60 HAT complex. In addition, through purification of MRGBP and its associated proteins from HeLa cell nuclear extracts, we identify the thyroid receptor coactivating protein (TRCp120), DMAP1, and the related MRG15 and MRGX proteins as MRGBP-associating proteins, and we present biochemical evidence that they are previously unrecognized components of the TRRAP/TIP60 HAT complex. Taken together, our findings shed new light on the structure and function of the mammalian TRRAP/TIP60 histone acetyltransferase complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号