首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   362篇
  免费   34篇
  2023年   6篇
  2022年   3篇
  2021年   9篇
  2020年   4篇
  2019年   8篇
  2018年   16篇
  2017年   13篇
  2016年   21篇
  2015年   20篇
  2014年   31篇
  2013年   28篇
  2012年   28篇
  2011年   29篇
  2010年   20篇
  2009年   29篇
  2008年   19篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   17篇
  2003年   13篇
  2002年   11篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1953年   1篇
排序方式: 共有396条查询结果,搜索用时 203 毫秒
61.
By the isolation of three different Aeromonas hydrophila strain AH-3 (serotype O34) mutants with an altered lipopolysaccharide (LPS) migration in gels, three genomic regions encompassing LPS core biosynthesis genes were identified and characterized. When possible, mutants were constructed using each gene from the three regions, containing seven, four, and two genes (regions 1 to 3, respectively). The mutant LPS core structures were elucidated by using mass spectrometry, methylation analysis, and comparison with the full core structure of an O-antigen-lacking AH-3 mutant previously established by us. Combining the gene sequence and complementation test data with the structural data and phenotypic characterization of the mutant LPSs enabled a presumptive assignment of all LPS core biosynthesis gene functions in A. hydrophila AH-3. The three regions and the genes contained are in complete agreement with the recently sequenced genome of A. hydrophila ATCC 7966. The functions of the A. hydrophila genes waaC in region 3 and waaF in region 2 were completely established, allowing the genome annotations of the two heptosyl transferase products not previously assigned. Having the functions of all genes involved with the LPS core biosynthesis and most corresponding single-gene mutants now allows experimental work on the role of the LPS core in the virulence of A. hydrophila.  相似文献   
62.
1. In the altricial rodent, Phyllotis darwini, we found higher body temperatures and faster developmental rates of the thermoregulatory capacity in neonates born from cold- than warm-acclimated mothers.
2. This difference could be explained by maternal effects on the litter, such as high levels of catecholamines and thyroxin levels, high concentration of the uncoupled protein and larger quantity of brown adipose tissue as a consequence of cold acclimation.
3. The exposition of mothers and the maintenance of cold condition during the early development might be responsible of the high metabolism and better thermoregulatory capacity of newborns.
Keywords: Phenotypic plasticity; Thermoregulation; Metabolism; Altricial rodents  相似文献   
63.
The structure of plant–pollinator networks has been claimed to be resilient to changes in species composition due to the weak degree of dependence among mutualistic partners. However, detailed empirical investigations of the consequences of introducing an alien plant species into mutualistic networks are lacking. We present the first cross-European analysis by using a standardized protocol to assess the degree to which a particular alien plant species (i.e. Carpobrotus affine acinaciformis, Impatiens glandulifera, Opuntia stricta, Rhododendron ponticum and Solanum elaeagnifolium) becomes integrated into existing native plant–pollinator networks, and how this translates to changes in network structure.Alien species were visited by almost half of the pollinator species present, accounting on average for 42 per cent of the visits and 24 per cent of the network interactions. Furthermore, in general, pollinators depended upon alien plants more than on native plants. However, despite the fact that invaded communities received more visits than uninvaded communities, the dominant role of alien species over natives did not translate into overall changes in network connectance, plant linkage level and nestedness. Our results imply that although supergeneralist alien plants can play a central role in the networks, the structure of the networks appears to be very permeable and robust to the introduction of invasive alien species into the network.  相似文献   
64.
65.
A novel differential in gel electrophoresis (DIGE)-based method has been developed and applied to measure telomere length and appearance of two-dimensional structural DNA changes. It can be applied to any area requiring quick and evident measurement of structural DNA changes.  相似文献   
66.
The activation of neutral sphingomyelinase-2 (nSMase2) and consequent ceramide production are implicated in many stress-induced signaling pathways. Trafficking of nSMase2 from the Golgi compartment to the plasma membrane (PM) in response to signaling stimuli has been described. However, the precise mechanisms of transport remain unknown. This study aimed to investigate the trafficking of nSMase2 between the Golgi and the PM. We show here that V5-nSMase2 localizes at the PM and Golgi in MCF-7 cells and confirm relocalization of nSMase2 to the PM at confluence. Although cycloheximide (CHX) treatment partially inhibited the Golgi localization of GFP-nSMase2, recovery of GFP-nSMase2 to an intracellular compartment was still observed after photobleaching. Moreover, in the presence of CHX, GFP- and V5-nSMase2 co-localized with endosomal/recycling markers. In HEK293 cells, activation of either protein kinase C-alpha or betaII, with the phorbol ester PMA led to relocalization of both wild-type and inactive nSMase2 to the pericentrion, a PKC-dependent subset of recycling endosomes. Finally, inhibition of nSMase2 endocytosis by K + depletion reduced the intracellular pool of nSMase2 and increased nSMase2 activity resulting in elevated ceramide levels. Altogether, these results suggest that nSMase2 traffics from the Golgi to the PM as a membrane protein en route to the cell surface and recycles back to the Golgi through the endosomal/recycling compartment. Moreover, the recycling of nSMase2 from the PM is important for its catalytic regulation.  相似文献   
67.
Following inducible expression in HEK293 cells, the human orexin-1 receptor was targeted to the cell surface but became internalized following exposure to the peptide agonist orexin A. By contrast, constitutive expression of the human cannabinoid CB1 receptor resulted in a predominantly punctate, intracellular distribution pattern consistent with spontaneous, agonist-independent internalization. Expression of the orexin-1 receptor in the presence of the CB1 receptor resulted in both receptors displaying the spontaneous internalization phenotype. Single cell fluorescence resonance energy transfer imaging indicated the two receptors were present as heterodimers/oligomers in intracellular vesicles. Addition of the CB1 receptor antagonist SR-141716A to cells expressing only the CB1 receptor resulted in re-localization of the receptor to the cell surface. Although SR-141716A has no significant affinity for the orexin-1 receptor, in cells co-expressing the CB1 receptor, the orexin-1 receptor was also re-localized to the cell surface by treatment with SR-141716A. Treatment of cells co-expressing the orexin-1 and CB1 receptors with the orexin-1 receptor antagonist SB-674042 also resulted in re-localization of both receptors to the cell surface. Treatment with SR-141716A resulted in decreased potency of orexin A to activate the mitogen-activated protein kinases ERK1/2 only in cells co-expressing the two receptors. Treatment with SB-674042 also reduced the potency of a CB1 receptor agonist to phosphorylate ERK1/2 only when the two receptors were co-expressed. These studies introduce an entirely novel pharmacological paradigm, whereby ligands modulate the function of receptors for which they have no significant inherent affinity by acting as regulators of receptor heterodimers.  相似文献   
68.
69.
Acid sphingomyelinase (aSMase) catalyzes the hydrolysis of sphingomyelin (SM) to form the bioactive lipid ceramide (Cer). Notably, aSMase exists in two forms: a zinc (Zn(2+))-independent lysosomal aSMase (L-SMase) and a Zn(2+)-dependent secreted aSMase (S-SMase) that arise from alternative trafficking of a single protein precursor. Despite extensive investigation into the maturation and trafficking of aSMase, the exact identity of mature L-SMase has remained unclear. Here, we describe a novel mechanism of aSMase maturation involving C-terminal proteolytic processing within, or in close proximity to, endolysosomes. Using two different C-terminal-tagged constructs of aSMase (V5, DsRed), we demonstrate that aSMase is processed from a 75-kDa, Zn(2+)-activated proenzyme to a mature 65 kDa, Zn(2+)-independent L-SMase. L-SMase is recognized by a polyclonal Ab to aSMase, but not by anti-V5 or anti-DsRed antibodies, suggesting that the C-terminal tag is lost during maturation. Furthermore, indirect immunofluorescence staining demonstrated that mature L-SMase colocalized with the lysosomal marker LAMP1, whereas V5-aSMase localized to the Golgi secretory pathway. Moreover, V5-aSMase possessed Zn(2+)-dependent activity suggesting it may represent the common protein precursor of S-SMase and L-SMase. Importantly, the 65-kDa L-SMase, but not V5-aSMase, was sensitive to the lysosomotropic inhibitor desipramine, co-fractionated with lysosomes, and migrated at the same M(r) as partially purified human aSMase. Finally, three aSMase mutants containing C-terminal Niemann-Pick mutations (R600H, R600P, ΔR608) exhibited defective proteolytic maturation. Taken together, these results demonstrate that mature L-SMase arises from C-terminal proteolytic processing of pro-aSMase and suggest that impaired C-terminal proteolysis may lead to severe defects in L-SMase function.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号