首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41733篇
  免费   3596篇
  国内免费   3904篇
  2024年   47篇
  2023年   434篇
  2022年   557篇
  2021年   1756篇
  2020年   1319篇
  2019年   1620篇
  2018年   1558篇
  2017年   1160篇
  2016年   1646篇
  2015年   2520篇
  2014年   2903篇
  2013年   3108篇
  2012年   3896篇
  2011年   3393篇
  2010年   2221篇
  2009年   2042篇
  2008年   2482篇
  2007年   2171篇
  2006年   2012篇
  2005年   1743篇
  2004年   1522篇
  2003年   1384篇
  2002年   1159篇
  2001年   875篇
  2000年   781篇
  1999年   742篇
  1998年   482篇
  1997年   445篇
  1996年   382篇
  1995年   349篇
  1994年   308篇
  1993年   235篇
  1992年   315篇
  1991年   252篇
  1990年   237篇
  1989年   182篇
  1988年   148篇
  1987年   152篇
  1986年   114篇
  1985年   92篇
  1984年   61篇
  1983年   82篇
  1982年   37篇
  1981年   33篇
  1980年   23篇
  1979年   29篇
  1978年   24篇
  1977年   21篇
  1976年   17篇
  1965年   18篇
排序方式: 共有10000条查询结果,搜索用时 892 毫秒
991.
With a pace of about twice the observed rate of global warming, the temperature on the Qinghai‐Tibetan Plateau (Earth's ‘third pole’) has increased by 0.2 °C per decade over the past 50 years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming‐induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process‐based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.  相似文献   
992.
A new two-phase kinetic model of sporulation of Clonostachys rosea in a new solid-state fermentation (SSF) reactor was proposed. The model including exponential and logistic models was applied to study the simultaneous effect of temperature, initial moisture content, medium thickness and surface porosity of the plastic membrane on C. rosea sporulation. The model fits experimental data very well and allows accurate predictions of spore production. The maximum spore production achieved 3.360 × 1010 (spores/gDM), about 10 times greater than that in traditional SSF reactor(data not shown). The new reactor can provide two times sporulation surface area. Moisture content can be adjusted by changing the surface porosity to meet the spore production. Two mixings carried out during fermentation makes medium loose and results in a mass of new sporulation surface area. Therefore, the new SSF reactor would have great potential for application in bulk spore production of fungal biocontrol agents.  相似文献   
993.
Malaria infections display variation patterns of clinical course and outcome. Although CD4+CD25+Foxp3+ regulatory T (Treg) cells play an essential role in immune homeostasis, the immune regulatory roles involved in malaria infection remains to be elucidated. Herein, we compared the disparity in Treg cells response during the course of blood stage Plasmodium chabaudi chabaudi AS (P. c chabaudi AS) infection in DBA/2 and BALB/c mice. BALB/c mice initiated a Th1/Th2 profile respond to P. c chabaudi AS infection, but DBA/2 mice failed to control P. c chabaudi AS infection and almost of them died post-peak parasitemia. At the peak parasitemia, we found that higher proportion of Treg cells with elevated Foxp3 expression in DBA/2 than in BALB/c mice. We used anti-CD25 mAb to deplete Treg cells and found that the survival time and rate were prolonged in DBA/2 mice treated with anti-CD25 mAb. Treatment with anti-CD25 mAb in vivo led to enhanced pro-inflammation responses and Foxp3 expression decline on Treg cells. In contrast, after DBA/2 was treatment with anti-IL-10R mAb, IL-10R blockade in vivo caused excessive pro-inflammation responses and Foxp3 expression loss on CD4+CD25+ T cells. Earlier death was found in all of DBA/2 mice with anti-IL-10R mAb. It suggested that IL-2 and IL-10 signal involved in maintaining Foxp3 expression on Treg cells. In all, the moderate suppressive activity of Treg cells may facilitate resistance to P. c chabaudi AS infection.  相似文献   
994.
Apoptosis is an important aspect of a number of biological processes, from embryogenesis to the stress–injury response. It plays a central role in balancing cell proliferation and tissue remodeling activity in many organisms. In the present study, apoptosis in 14 days post infection schistosomula was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays and DAPI staining. Additionally, flow cytometry using the Annexin V-FITC/propidium iodide (PI) (Annexin V/PI) assay confirmed the percentage of early apoptotic, late apoptotic, and necrotic cells in 14 and 23 days post infection worms. Conserved Domain Database (CDD) BLAST analysis and alignment analysis of known schistosome proteins demonstrated the feasibility of detecting the activity of caspase-3 and -7 using the caspase-3/7 Glo analysis assay. Analysis of caspase-3 and -7 activities in schistosome demonstrated that both caspases were active in each developmental stage of Schistosoma japonicum, but was highest in the 14 days post infection schistosomula. Additionally, the caspase peptide inhibitor (Z-VAD-FMK) inhibited the caspase-3/7 activity at all developmental stages examined. Therefore, we hypothesized that two main signaling pathways are involved in apoptosis in S. japonicum, the caspase cascade and the mitochondrial-initiated pathway. We have constructed a model of these two pathways, including how they may interact and their biological outcomes. qRT-PCR analyses of the gene expression profiles of apoptosis-related genes supported our hypothesis of the relationship between the apoptotic pathway and parasite development. The data presented here demonstrates that apoptosis is an important biological process for the survival and development of the schistosome, and identifies potential novel therapeutic targets.  相似文献   
995.
Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.  相似文献   
996.
Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG‐derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5‐GS28‐Ykt6‐GS15 and Stx6‐Stx16‐Vti1a‐VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7‐deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1‐, Cog4‐ and Cog6‐depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG‐associated CDG patients, thereby exerting severe pleiotropic defects.  相似文献   
997.
Osteoprotegerin (OPG) gene polymorphisms (T245G, T950C and G1181C) have been associated with osteoporosis and early predictors of cardiovascular disease. The aim of this study was to evaluate whether these polymorphisms contribute to cardiovascular disease (CVD) in type 2 diabetic patients. We performed a case-control study with 178 CVD subjects with diabetes and 312 diabetic patients without CVD to assess the impact of variants of the OPG gene on the risk of CVD. The OPG gene polymorphisms were analyzed by using the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). There was no significant association between the T245G and G1181C polymorphisms and CVD in the additive genetic model (OR = 0.96, 95% CI 0.64–1.45, p = 0.79; OR = 1.06, 95% CI 0.81–1.39, p = 0.65, respectively). However, the C allele of the T950C polymorphism was independently associated with a risk of CVD in type 2 diabetic patients in this genetic model (OR = 1.38, 95% CI 1.07–1.80, p = 0.01). This study provides evidence that the C allele of the T950C polymorphism is associated with increased risk of CVD in diabetic patients. However, well-designed prospective studies with a larger sample size are needed to validate these results.  相似文献   
998.
999.
Both flooding and drought are important in determining plant distribution in wetlands. However, the roles of plant’s physiological response to flooding and drought in accounting for plant distribution are far from clear. To this end, three typical wetland plants with different distribution patterns (high-elevation species Miscanthus sacchariflorus, low-elevation species Carex brevicuspis and Polygonum hydropiper) in Dongting Lake were treated with three water levels (flooding 25 cm, control 0 cm, drought ?25 cm), and relative growth rate (RGR), malondialdehyde (MDA) content, electrolyte leakage and proline content were investigated. The RGR of the three species decreased significantly in both flooding and drought treatments. Compared to the control, the RGR of M. sacchariflorus decreased more in the flooding treatment but less in the drought treatment compared to the other two species. The contents of MDA in the three species increased in both flooding and drought treatments, except for P. hydropiper in the flooding treatment. MDA contents increased more in M. sacchariflorus in the flooding treatment but less in the drought treatment compared to the other two species. Only M. sacchariflorus had a higher electrolyte leakage in the flooding treatment, and drought led to a higher electrolyte leakage in P. hydropiper and C. brevicuspis. Proline content increased 69.2, 66.7 and 39.6 % in P. hydropiper, C. brevicuspis and M. sacchariflorus in the flooding treatment, and increased 44.2, 13.0 and 45.3 % in the drought treatment, respectively. These results suggest that M. sacchariflorus has a higher tolerance to drought but a lower tolerance to flooding than do the other two species, which might be the intrinsic mechanisms accounting for their different distribution patterns.  相似文献   
1000.
Recent studies indicate that microRNA (miRNA) is contained within exosome. Here we sought to optimize the methodologies for the isolation and quantification of urinary exosomal microRNA as a prelude to biomarker discovery studies. Exosomes were isolated through ultracentrifugation and characterized by immunoelectron microscopy. To determine the RNA was confined inside exosomes, the pellet was treated with RNase before RNA isolation. The minimum urine volume, storage conditions for exosomes and exosomal miRNA was evaluated. The presence of miRNAs in patients with various kidney diseases was validated with real-time PCR. The result shows that miRNAs extracted from the exosomal fraction were resistant to RNase digestion and with high quality confirmed by agarose electrophoresis. 16ml of urine was sufficient for miRNA isolation by absolute quantification with 4.15×105 copies/ul for miR-200c. Exosomes was stable at 4℃ 24h for shipping before stored at -80℃ and was stable in urine when stored at -80°C for 12months. Exosomal miRNA was detectable despite 5 repeat freeze-thaw cycles. The detection of miRNA by quantitative PCR showed high reproducibility (>94% for intra-assay and >76% for inter-assay), high sensitivity (positive call 100% for CKD patients), broad dynamic range (8-log wide) and good linearity for quantification (R2>0.99). miR-29c and miR-200c showed different expression in different types of kidney disease. In summary, the presence of urinary exosomal miRNA was confirmed for patients with a diversity of chronic kidney disease. The conditions of urine collection, storage and miRNA detection determined in this study may be useful for future biomarker discovery efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号