首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   777篇
  免费   50篇
  国内免费   1篇
  2023年   3篇
  2021年   7篇
  2018年   6篇
  2017年   8篇
  2016年   18篇
  2015年   24篇
  2014年   14篇
  2013年   28篇
  2012年   36篇
  2011年   41篇
  2010年   37篇
  2009年   24篇
  2008年   44篇
  2007年   47篇
  2006年   33篇
  2005年   22篇
  2004年   34篇
  2003年   32篇
  2002年   33篇
  2001年   34篇
  2000年   32篇
  1999年   21篇
  1998年   19篇
  1997年   18篇
  1996年   14篇
  1995年   8篇
  1994年   10篇
  1993年   14篇
  1992年   12篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   9篇
  1987年   9篇
  1986年   5篇
  1985年   12篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   8篇
  1980年   3篇
  1979年   4篇
  1977年   6篇
  1976年   3篇
  1975年   10篇
  1972年   5篇
  1971年   4篇
  1950年   2篇
  1939年   2篇
  1934年   3篇
排序方式: 共有828条查询结果,搜索用时 15 毫秒
31.
32.
The ontogeny of two stereotypic patterns, wire-gnawing and jumping, was studied in 24 laboratory mice: six males and six females each of two closely related outbred strains, kept under standard housing conditions, a conventional albino strain (ICR) and a nude, athymic mutant (ICR nu; hereafter: NU). All 24 individuals developed wire-gnawing after weaning at 20 d of age. In ICR one female and in NU five males and three females additionally developed jumping. ICR developed wire-gnawing between the age of 20 and 30 d, in NU jumping started at the age of 20 d, but intense jumping and wire-gnawing comparable to that of ICR did not develop in NU before the age of 40–50 d. Within each strain there was no significant difference between males and females with respect to the development of stereotypic behaviour. By contrast, ICR showed significantly more wire-gnawing but less jumping than NU. Stereotypy level increased with age up to a mean of 10.7 % of total activity in ICR and up to 7.4 % in NU at 100 d of age. However, there was huge inter- and intra-individual variability with respect to all parameters assessed in this study, i.e. total duration, number of bouts and bout length of the two stereotyped patterns. Wire-gnawing developed from outside-directed explorative climbing at the cage lid, whereas the source behaviour pattern (Mason 1991 a, Anim. Behav. 41, 1015–1037) of jumping was outside-directed explorative rearing at the cage wall. At 20 d of age, before the onset of stereotypy development, ICR showed significantly more climbing but less rearing than NU. Physical retardation of NU at weaning may account for decreased climbing ability during early ontogeny, and hence for the retarded development of wire-gnawing. The difference in early experience with either of the two patterns rather than genetic effects may be responsible for the qualitative difference between the strains with respect to the form of later stereotypy.  相似文献   
33.
Structure–function studies are frequently practiced on the very diverse group of natural carbohydrate-binding modules in order to understand the target recognition of these proteins. We have taken a step further in the study of carbohydrate-binding modules and created variants with novel binding properties by molecular engineering of one such molecule of known 3D-structure. A combinatorial library was created from the sequence encoding a thermostable carbohydrate-binding module, CBM4-2 from a Rhodothermus marinus xylanase, and the phage-display technology was successfully used for selection of variants with specificity towards different carbohydrate polymers (birchwood xylan, Avicel?, ivory nut mannan and recently also xyloglucan), as well as towards a glycoprotein (human IgG4). Our work not only generated a number of binders with properties that would suite a range of biotechnological applications, but analysis the selected binders also helped us to identify residues important for their specificities.  相似文献   
34.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy—superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but–importantly–in the “other” or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the “other” protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   
35.
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.Worldwide, cancer is a leading cause of death. With estimated 1.2 million diagnoses in 2008, colorectal cancer is the third most common cancer in the world and the fourth most common cause of death with an annual mortality of ∼600 000 (1). The exact causes of colorectal cancer are unknown, but different risk factors such as age, polyps, personal and family history, ulcerative colitis, or Crohn''s colitis have been proposed (2). Standard screening procedures include flexible sigmoidoscopy, colonoscopy, and immunological fecal occult blood testing. Each of them has its advantages and drawbacks such as invasiveness or low sensitivity and specificity (3). The method of choice for the treatment of colorectal cancer is surgery and therapeutic decisions are based on the tumor, lymph node, and metastasis staging-system as a prognostic factor (4). Current research has led to improved treatment strategies of colorectal cancer, however, the clinical outcome, the progression of the disease, and the response to the treatment remain variable among individuals. The heterogeneity of colorectal cancer at the molecular level—caused by accumulation of multiple genetic changes—may be one of the main reasons for this variability (5). Genetic factors such as instabilities, but also expression levels (6) can explain part of the cancer biology, but glycomics is gaining importance to complement the overall picture as aberrant glycosylation of proteins and lipids has been shown to be correlated with disease and malignancy (7, 8).Glycosylation is involved in many biological processes and especially its functional role in cellular interaction with respect to adhesion, cell growth, and signaling is prone to be affected in cancer progression, invasion, and metastasis (9). Several cancer-associated alterations in protein glycosylation have been reported: (1) increased branching of N-glycans, (2) higher density of O-glycans, and (3) incomplete synthesis of glycans. More particularly, an increased or induced expression of GlcNAc transferase V resulting in N-glycan structures with β1–6GlcNAc antennae (5, 10), and the expression of (sialyl) Tn-antigens (11) as aberrant O-glycosylation have been reported (10).Altered glycosphingolipid (GSL)1 glycosylation of the cell surface membrane during malignancy can affect cell recognition, adhesion, and signal transduction (12) and is found to reflect: (1) incomplete synthesis with or without precursor accumulation, (2) neosynthesis (9), (3) increased sialylation, and (4) increased fucosylation (13). In many cancers, including colorectal cancer, an overexpression of the (sialyl) Lewis X antigen (10, 14) and the expression of (sialyl) Lewis A (15) are considered to be related to malignant transformation—reflecting incomplete synthesis of sialyl 6-sulfo Lewis X and disialyl Lewis A (16) as well as neosynthesis (17). Studies on gangliosides showed an overexpression of these sialylated GSLs in human malignant melanoma (18). Furthermore, the involvement of gangliosides in cell adhesion and motility was reported, which contributes to tumor metastasis (19). Specifically, the gangliosides GD3 (Hex2NeuAc2ceramide) and GM2 (Hex2HexNAc1NeuAc1ceramide) have been found to be associated with tumor-angiogenesis (19). The up-regulation of fucosyltransferases in cancer was shown to cause a higher degree of fucosylation in malignant tissues (20) and Moriwaki et al. proposed that the increase in the fucosylation for GSLs was an early event in cancer (21). Misonou et al. investigated glycans derived from GSLs in colorectal cancer tissues showing aberrant glycan structures based on linkage differences as well as increased sialylation and fucosylation compared with control tissue (22), which is in line with observed changes in GSL glycosylation with regard to cancer progression (9, 13).Recently, we investigated the N-glycosylation profiles of colorectal tumors and correlating control tissues for biomarker discovery. Statistical analyses revealed an increase of sulfated glycan structures as well as paucimannosidic glycans and glycans containing sialylated Lewis type epitopes in the tumor tissue, whereas structures with bisecting GlcNAc were found to be decreased in malignancy (23). To further progress the understanding of colorectal cancer biology and the improvement of diagnostic tools and patient treatment, we complemented this recent study on N-glycosylation by an investigation of the glycosphingolipid-derived glycans (named GSL-glycans in the following) from frozen tumor tissues and corresponding control tissues from the same 13 colorectal cancer patients. GSL-glycans were enzymatically released, labeled with 2-aminobenzoic acid (AA) and analyzed by hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Employing multivariate statistical analysis, this approach revealed an intricate GSL-glycosylation pattern of tumor tissues and specific glycosylation differences in comparison to the corresponding control tissue.  相似文献   
36.
The Guayana Highlands (GH) constitute a highly diverse, but relatively poorly studied Neotropical biome, comprised of ~50 flat-topped mountain summits (called tepuis). Previous studies based on warming forecasts for the region suggested that an upward displacement of environmental conditions of 500–700 m could occur by 2100, potentially resulting in the extinction of c. 50% of its endemic flora due to total habitat loss. To assess the ecological responses of the species to climate change, and select the appropriate conservation measures, long-term monitoring of the GH plant communities will be necessary. In this study, the baseline state for future comparisons was established for the best explored tepui in terms of its flora, Roraima-tepui (2810 m), through a floristic characterization of its different vegetation types. We also identified the environmental gradients underlying the major plant communities, and assessed the effects of human activities on the chemistry of soils and water at three field camps. Our results yielded five main community types: three meadows, one shrubland, and one forest, with their corresponding diagnostic species. The herbaceous communities were mainly influenced by the presence of flat sandy soils, with varying flooding capacity. Shrublands and forests were characterized by irregular organic soils with very low pH. Finally, pH values below 3 were measured on an organic soil of a field camp, although further studies will be necessary to attribute this deviation to human activities.  相似文献   
37.
Freidman  Natasha  Chen  Ichia  Wu  Qianyi  Briot  Chelsea  Holst  Jeff  Font  Josep  Vandenberg  Robert  Ryan  Renae 《Neurochemical research》2020,45(6):1268-1286

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.

  相似文献   
38.

Background

Prostasomes are extracellular vesicles. Intracellularly they are enclosed by another larger vesicle, a so called “storage vesicle” equivalent to a multivesicular body of late endosomal origin. Prostasomes in their extracellular context are thought to play a crucial role in fertilization.

Methods

Prostasomes were purified according to a well worked-out schedule from seminal plasmas obtained from human, canine, equine and bovine species. The various prostasomes were subjected to SDS-PAGE separation and protein banding patterns were compared. To gain knowledge of the prostasomal protein systems pertaining to prostasomes of four different species proteins were analyzed using a proteomic approach. An in vitro assay was employed to demonstrate ATP formation by prostasomes of different species.

Results

The SDS-PAGE banding pattern of prostasomes from the four species revealed a richly faceted picture with most protein bands within the molecular weight range of 10–150 kDa. Some protein bands seemed to be concordant among species although differently expressed and the number of protein bands of dog prostasomes seemed to be distinctly fewer. Special emphasis was put on proteins involved in energy metabolic turnover. Prostasomes from all four species were able to form extracellular adenosine triphosphate (ATP). ATP formation was balanced by ATPase activity linked to the four types of prostasomes.

Conclusion

These potencies of a possession of functional ATP-forming enzymes by different prostasome types should be regarded against the knowledge of ATP having a profound effect on cell responses and now explicitly on the success of the sperm cell to fertilize the ovum.

General significance

This study unravels energy metabolic relationships of prostasomes from four different species.  相似文献   
39.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
40.
Climate change may influence the phenology of organisms unequally across trophic levels and thus lead to phenological mismatches between predators and prey. In cases where prey availability peaks before reproducing predators reach maximal prey demand, any negative fitness consequences would selectively favor resynchronization by earlier starts of the reproductive activities of the predators. At a study site in northeast Greenland, over a period of 17 years, the median emergence of the invertebrate prey of Sanderling Calidris alba advanced with 1.27 days per year. Yet, over the same period Sanderling did not advance hatching date. Thus, Sanderlings increasingly hatched after their prey was maximally abundant. Surprisingly, the phenological mismatches did not affect chick growth, but the interaction of the annual width and height of the peak in food abundance did. Chicks grew especially better in years when the food peak was broad. Sanderling clutches were most likely to be depredated early in the season, which should delay reproduction. We propose that high early clutch predation may favor a later reproductive timing. Additionally, our data suggest that in most years food was still abundant after the median date of emergence, which may explain why Sanderlings did not advance breeding along with the advances in arthropod phenology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号