首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1007篇
  免费   110篇
  2021年   20篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2016年   7篇
  2015年   31篇
  2014年   18篇
  2013年   33篇
  2012年   37篇
  2011年   40篇
  2010年   30篇
  2009年   32篇
  2008年   36篇
  2007年   46篇
  2006年   44篇
  2005年   33篇
  2004年   31篇
  2003年   41篇
  2002年   31篇
  2001年   30篇
  2000年   33篇
  1999年   35篇
  1998年   20篇
  1997年   18篇
  1996年   14篇
  1995年   10篇
  1994年   12篇
  1993年   13篇
  1992年   42篇
  1991年   24篇
  1990年   32篇
  1989年   24篇
  1988年   20篇
  1987年   22篇
  1986年   23篇
  1985年   17篇
  1984年   14篇
  1983年   20篇
  1982年   12篇
  1981年   8篇
  1980年   17篇
  1979年   8篇
  1978年   13篇
  1976年   5篇
  1975年   6篇
  1974年   14篇
  1973年   13篇
  1972年   10篇
  1971年   7篇
  1970年   8篇
排序方式: 共有1117条查询结果,搜索用时 46 毫秒
91.
Overexpression of the 22-kDa peripheral myelin protein (PMP22) causes the inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1A (CMT1A). In an attempt to alter PMP22 gene expression as a possible therapeutic strategy for CMT1A, antiparallel triplex-forming oligonucleotides (TFO) were designed to bind to purine-rich target sequences in the two PMP22 gene promoters, P1 and P2. Target region I in P1 and region V in P2 were also shown to specifically bind proteins in mammalian nuclear extracts. Competition for binding of these targets by TFO vs. protein(s) was compared by exposing proteins to their target sequences after triplex formation (passive competition) or by allowing TFO and proteins to simultaneously compete for the same targets (active competition). In both formats, TFO were shown to competitively interfere with the binding of protein to region I. Oligonucleotides directed to region V competed for protein binding by a nontriplex-mediated mechanism, most likely via the formation of higher-order, manganese-destabilizable structures. Given that the activity of the P1 promoter is closely linked to peripheral nerve myelination, TFO identified here could serve as useful reagents in the investigation of promoter function, the role of PMP22 in myelination, and possibly as rationally designed drugs for the therapy of CMT1A. The nontriplex-mediated action of TFO directed at the P2 promoter may have wider implications for the use of such oligonucleotides in vivo.  相似文献   
92.
A series of peptides containing histidine residues were designed as potential hybridization rate enhancers within a polymeric matrix of DNA microarrays. The polymeric matrix modified with these peptides showed strong attraction to DNA molecules under conditions of induction. DNA probes on the peptide-modified sites rapidly hybridized to their complementary targets with single base pair mismatch discrimination.  相似文献   
93.
94.
95.
96.
Members of the vasodilator-stimulated phosphoprotein (VASP) family are important regulators of actin cytoskeletal dynamics whose functions and protein-protein interactions are regulated by phosphorylation by the cAMP-dependent protein kinase (PKA). Herein, we show that phosphorylation of VASP is dynamically regulated by cellular adhesion to extracellular matrix. Detachment of cells stimulated PKA activity and induced PKA-dependent phosphorylation of VASP and the related murine-Enabled (Mena) protein. VASP and Mena were rapidly dephosphorylated immediately following reattachment but showed an intermediate level of phosphorylation during active cell spreading. This pattern correlated closely with adhesion-dependent changes in PKA activity. The in vivo interaction of VASP with the Abl tyrosine kinase, shown here for the first time, was readily apparent in adherent cells, lost following cellular detachment, and induced upon reattachment to matrix. Importantly, inhibition of PKA activity prevented phosphorylation of VASP and dissociation of VASP-Abl complexes after cellular detachment, whereas activation of PKA completely eliminated the co-immunoprecipitation of Abl activity with VASP. These data establish a new biochemical link between cell adhesion and regulation of VASP proteins and provide the first demonstration of a regulated interaction between VASP and Abl in mammalian cells.  相似文献   
97.
Lymphotoxin-alpha(-/-) (LTalpha(-/-)) mice are thought to be unable to generate effective T and B cell responses. This is attributed to the lack of lymph nodes and the disrupted splenic architecture of these mice. However, despite these defects we found that LTalpha(-/-) mice could survive infection with a virulent influenza A virus. LTalpha(-/-) mice and normal wild-type mice infected with influenza A generated similar numbers of influenza-specific CD8 T cells that were able to produce IFN-gamma and kill target cells presenting influenza peptides. Furthermore influenza-infected LTalpha(-/-) mice produced high titers of influenza-specific IgM, IgG, and IgA. However, both CD8 and B cell immune responses were delayed in LTalpha(-/-) mice by 2-3 days. The delayed cellular and humoral immune response was sufficient to mediate viral clearance in LTalpha(-/-) mice that were infected with relatively low doses of influenza virus. However, when LTalpha(-/-) mice were infected with larger doses of influenza, they succumbed to infection before the immune response was initiated. These results demonstrate that neither LTalpha nor constitutively organized lymphoid tissues, such as lymph nodes and spleen, are absolutely required for the generation of effective immunity against the respiratory virus influenza A. However, the presence of LTalpha and/or lymph nodes does accelerate the initiation of immune responses, which leads to protection from larger doses of virus.  相似文献   
98.
99.
100.
The machinery mediating chromosome condensation is poorly understood. To begin to dissect the in vivo function(s) of individual components, we monitored mitotic chromosome structure in mutants of condensin, cohesin, histone H3, and topoisomerase II (topo II). In budding yeast, both condensation establishment and maintenance require all of the condensin subunits, but not topo II activity or phospho-histone H3. Structural maintenance of chromosome (SMC) protein 2, as well as each of the three non-SMC proteins (Ycg1p, Ycs4p, and Brn1p), was required for chromatin binding of the condensin complex in vivo. Using reversible condensin alleles, we show that chromosome condensation does not involve an irreversible modification of condensin or chromosomes. Finally, we provide the first evidence of a mechanistic link between condensin and cohesin function. A model discussing the functional interplay between cohesin and condensin is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号