首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
DNA replication and repair require a specific mechanism to join the 3'- and 5'-ends of two strands to maintain DNA continuity. In order to understand the details of this process, we studied the activity of the 5' nucleases with substrates containing an RNA template strand. By comparing the eubacterial and archaeal 5' nucleases, we show that the polymerase domain of the eubacterial enzymes is critical for the activity of the 5' nuclease domain on RNA containing substrates. Analysis of the activity of chimeric enzymes between the DNA polymerases from Thermus aquaticus (TaqPol) and Thermus thermophilus (TthPol) reveals two regions, in the "thumb" and in the "palm" subdomains, critical for RNA-dependent 5' nuclease activity. There are two critical amino acids in those regions that are responsible for the high activity of TthPol on RNA containing substrates. Mutating glycine 418 and glutamic acid 507 of TaqPol to lysine and glutamine, respectively, increases its RNA-dependent 5' nuclease activity 4-10-fold. Furthermore, the RNA-dependent DNA polymerase activity is controlled by a completely different region of TaqPol and TthPol, and mutations in this region do not affect the 5' nuclease activity. The results presented here suggest a novel substrate binding mode of the eubacterial DNA polymerase enzymes, called a 5' nuclease mode, that is distinct from the polymerizing and editing modes described previously. The application of the enzymes with improved RNA-dependent 5' nuclease activity for RNA detection using the invasive signal amplification assay is discussed.  相似文献   

13.
14.
Four Thermus strains produced lipolytic activity when grown in liquid medium for 30 h at 70 degrees C. The highest total lipase/esterase activity (57 U l(-1)) was in Thermus aquaticus YT-1, followed by Thermus thermophilus HB27 and HB8 (33 and 25 U l(-1), respectively), and finally by Thermus sp. (16 U l(-1)). Extra-cellular activity was detected in T. aquaticus YT-1 and T. thermophilus HB27 (33 and 17 U l(-1)). All enzymes were stable at 80 degrees C over 30 min, and their activity towards fatty acid esters increased as substrate chain-length diminished (i.e. hydrolysis rate was up to 6-fold higher on p-nitrophenyl caproate than on laurate).  相似文献   

15.
A quantitative screening for intra- and extracellular lipolytic activity was performed in submerged cultures of four Thermus strains using two different media (named T or D medium). Major differences in the extracellular lipolytic activity were observed in T medium, the highest values being for Thermus thermophilus HB27 and Thermus aquaticus YT1 strains (18 and 33 U/L, respectively). Two enzymes with lipase/esterase activity were identified in the four Thermus strains by zymogram analysis, with molecular weights of 34 and 62 kDa. No kinetic typification of the enzymes as primary metabolites was possible for any of the Thermus strains, because of the lack of a good fitting of the experimental lipolytic activity production rates to the Luedecking and Piret model. However, a linear relationship was found between the absolute values of biomass and total lipase/esterase activity (sum of intracellular and extracellular). For T. thermophilus HB27, an increase in the aeration rate caused the increase in the production of biomass and, particularly, intracellular lipolytic activity but the extracellular lipolytic activity was not affected except for the series with the strongest oxygen limitation. Transmission electronic microscopy revealed that T. thermophilus HB27 formed rotund bodies surrounded by a common membrane in cultures in the early stationary phase. The results suggest the occurrence of a specific mechanism of lipase/esterase secretion that might be due to the different composition and permeability of the cell membranes and those surrounding the rotund bodies.  相似文献   

16.
17.
Potent inhibitors limit the use of PCR assays in a wide spectrum of specimens. Here, we describe the engineering of polymerases with a broad resistance to complex environmental inhibitors using molecular breeding of eight different polymerase orthologues from the genus Thermus and directed evolution by CSR in the presence of inhibitors. Selecting for resistance to the inhibitory effects of Neomylodon bone powder, we isolated 2D9, a chimeric polymerase comprising sequence elements derived from DNA polymerases from Thermus aquaticus, Thermus oshimai, Thermus thermophilus and Thermus brockianus. 2D9 displayed a striking resistance to a broad spectrum of complex inhibitors of highly divergent composition including humic acid, bone dust, coprolite, peat extract, clay-rich soil, cave sediment and tar. The selected polymerase promises to have utility in PCR-based applications in a wide range of fields including palaeobiology, archaeology, conservation biology, forensic and historic medicine.  相似文献   

18.
A set of 45 different tRNAs, each containing a single deoxynucleotide substitution covering the upper half of the molecule was used in conjunction with a high-throughput ribonuclease protection assay to investigate the thermodynamic role of 2' hydroxyl groups in stabilizing a complex with elongation factor Tu (EF-Tu) from Thermus thermophilus. Five distinct 2' hydroxyl groups were identified where substitution with a proton resulted in an approximately tenfold decrease in the binding affinity. The same five 2' hydroxyl groups reduced the affinity of the interaction with the nearly identical Thermus aquaticus EF-Tu. Four of these 2' hydroxyl groups were observed to form hydrogen bonds in a co-crystal structure of tRNA(Phe) and T. aquaticus EF-Tu, while the fifth 2' hydroxyl group can be associated with an intramolecular hydrogen bond in the tRNA. However, four additional hydrogen bonds to 2' hydroxyl groups observed in the crystal structure show no thermodynamic effect upon disruption. Some of these discrepancies may be reconciled based on the unbound structures of the protein and RNA.  相似文献   

19.
The genes for the ribosomal 5S rRNA binding protein L5 have been cloned from three extremely thermophilic eubacteria, Thermus flavus, Thermus thermophilus HB8 and Thermus aquaticus (Jahn et al, submitted). Genes for protein L5 from the three Thermus strains display 95% G/C in third positions of codons. Amino acid sequences deduced from the DNA sequence were shown to be identical for T flavus and T thermophilus, although the corresponding DNA sequences differed by two T to C transitions in the T thermophilus gene. Protein L5 sequences from T flavus and T thermophilus are 95% homologous to L5 from T aquaticus and 56.5% homologous to the corresponding E coli sequence. The lowest degrees of homology were found between the T flavus/T thermophilus L5 proteins and those of yeast L16 (27.5%), Halobacterium marismortui (34.0%) and Methanococcus vannielii (36.6%). From sequence comparison it becomes clear that thermostability of Thermus L5 proteins is achieved by an increase in hydrophobic interactions and/or by restriction of steric flexibility due to the introduction of amino acids with branched aliphatic side chains such as leucine. Alignment of the nine protein sequences equivalent to Thermus L5 proteins led to identification of a conserved internal segment, rich in acidic amino acids, which shows homology to subsequences of E coli L18 and L25. The occurrence of conserved sequence elements in 5S rRNA binding proteins and ribosomal proteins in general is discussed in terms of evolution and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号