首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7135篇
  免费   697篇
  国内免费   3篇
  2021年   135篇
  2020年   72篇
  2019年   95篇
  2018年   118篇
  2017年   108篇
  2016年   183篇
  2015年   306篇
  2014年   338篇
  2013年   432篇
  2012年   492篇
  2011年   515篇
  2010年   325篇
  2009年   299篇
  2008年   429篇
  2007年   415篇
  2006年   346篇
  2005年   372篇
  2004年   346篇
  2003年   337篇
  2002年   340篇
  2001年   84篇
  2000年   58篇
  1999年   65篇
  1998年   81篇
  1997年   60篇
  1996年   66篇
  1995年   50篇
  1994年   57篇
  1993年   58篇
  1992年   56篇
  1991年   48篇
  1990年   40篇
  1989年   48篇
  1988年   32篇
  1987年   44篇
  1986年   33篇
  1985年   27篇
  1984年   33篇
  1983年   38篇
  1982年   43篇
  1981年   32篇
  1980年   33篇
  1979年   37篇
  1978年   41篇
  1977年   39篇
  1974年   31篇
  1973年   31篇
  1972年   35篇
  1970年   35篇
  1967年   34篇
排序方式: 共有7835条查询结果,搜索用时 468 毫秒
991.
A bilobed structure marked by TbCentrin2 regulates Golgi duplication in the protozoan parasite Trypanosoma brucei. This structure must itself duplicate during the cell cycle for Golgi inheritance to proceed normally. We show here that duplication of the bilobed structure is dependent on the single polo-like kinase (PLK) homologue in T. brucei (TbPLK). Depletion of TbPLK leads to malformed bilobed structures, which is consistent with an inhibition of duplication and an increase in the number of dispersed Golgi structures with associated endoplasmic reticulum exit sites. These data suggest that the bilobe may act as a scaffold for the controlled assembly of the duplicating Golgi.  相似文献   
992.
Myostatin directly regulates skeletal muscle fibrosis   总被引:3,自引:0,他引:3  
Skeletal muscle fibrosis is a major pathological hallmark of chronic myopathies in which myofibers are replaced by progressive deposition of collagen and other extracellular matrix proteins produced by muscle fibroblasts. Recent studies have shown that in the absence of the endogenous muscle growth regulator myostatin, regeneration of muscle is enhanced, and muscle fibrosis is correspondingly reduced. We now demonstrate that myostatin not only regulates the growth of myocytes but also directly regulates muscle fibroblasts. Our results show that myostatin stimulates the proliferation of muscle fibroblasts and the production of extracellular matrix proteins both in vitro and in vivo. Further, muscle fibroblasts express myostatin and its putative receptor activin receptor IIB. Proliferation of muscle fibroblasts, induced by myostatin, involves the activation of Smad, p38 MAPK and Akt pathways. These results expand our understanding of the function of myostatin in muscle tissue and provide a potential target for anti-fibrotic therapies.  相似文献   
993.
TiO2-coated surfaces are increasingly studied for their ability to inactivate microorganisms. The activity of glass coated with thin films of TiO2, CuO and hybrid CuO/TiO2 prepared by atmospheric Chemical Vapour Deposition (Ap-CVD) and TiO2 prepared by a sol–gel process was investigated using the inactivation of bacteriophage T4 as a model for inactivation of viruses. The chemical oxidising activity was also determined by measuring stearic acid oxidation. The results showed that the rate of inactivation of bacteriophage T4 increased with increasing chemical oxidising activity with the maximum rate obtained on highly active sol–gel preparations. However, these were delicate and easily damaged unlike the Ap-CVD coatings. Inactivation rates were highest on CuO and CuO/TiO2 which had the lowest chemical oxidising activities. The inactivation of T4 was higher than that of Escherichia coli on low activity surfaces. The combination of photocatalysis and toxicity of copper acted synergistically to inactivate bacteriophage T4 and retained some self-cleaning activity. The presence of phosphate ions slowed inactivation but NaCl had no effect. The results show that TiO2/CuO coated surfaces are highly antiviral and may have applications in the food and healthcare industries.  相似文献   
994.
Mutants of transketolase (TK) with improved substrate specificity towards the non-natural aliphatic aldehyde substrate propionaldehyde have been obtained by directed evolution. We used the same active-site targeted saturation mutagenesis libraries from which we previously identified mutants with improved activity towards glycolaldehyde, which is C2-hydroxylated like all natural TK substrates. Comparison of the new mutants to those obtained previously reveals distinctly different subsets of enzyme active-site mutations with either improved overall enzyme activity, or improved specificity towards either the C2-hydroxylated or non-natural aliphatic aldehyde substrate. While mutation of phylogenetically variant residues was found previously to yield improved enzyme activity on glycolaldehyde, we show here that these mutants in fact gave improved activity on both substrate types. In comparison, the new mutants were obtained at conserved residues which interact with the C2-hydroxyl group of natural substrates, and gave up to 5-fold improvement in specific activity and 64-fold improvement in specificity towards propionaldehyde relative to glycolaldehyde. This suggests that saturation mutagenesis can be more selectively guided for evolution towards either natural or non-natural substrates, using both structural and sequence information.  相似文献   
995.
The FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity. Sprys are expressed in close proximity to FGF signaling centers and regulate FGFR-ERK-mediated organogenesis. During endochondral ossification, Spry genes are expressed in prehypertrophic and hypertrophic chondrocytes. Using a conditional transgenic approach in chondrocytes in vivo, the forced expression of Spry1 resulted in neonatal lethality with accompanying skeletal abnormalities resembling thanatophoric dysplasia II, including increased apoptosis and decreased chondrocyte proliferation in the presumptive reserve and proliferating zones. In vitro chondrocyte cultures recapitulated the inhibitory effect of Spry1 on chondrocyte proliferation. In addition, overexpression of Spry1 resulted in sustained ERK activation and increased expression of p21 and STAT1. Immunoprecipitation experiments revealed that Spry1 expression in chondrocyte cultures resulted in decreased FGFR2 ubiquitination and increased FGFR2 stability. These results suggest that constitutive expression of Spry1 in chondrocytes results in attenuated FGFR2 degradation, sustained ERK activation, and up-regulation of p21Cip and STAT1 causing dysregulated chondrocyte proliferation and terminal differentiation.  相似文献   
996.
The expression of 4 pluripotency genes (Oct4, Sox2, c-Myc and Klf4) in mouse embryonic fibroblasts can reprogramme them to a pluripotent state. We have investigated the expression of these pluripotency genes when human somatic 293T cells are permeabilized and incubated in extracts of mouse embryonic stem (ES) cells. Expression of all 4 genes was induced over 1–8 h. Gene expression was associated with loss of repressive histone H3 modifications and increased recruitment of RNA polymerase II at the promoters. Lamin A/C, which is typically found only in differentiated cells, was also removed from the nuclei. When 293T cells were returned to culture after exposure to ES cell extract, the expression of the pluripotency genes continued to rise over the following 48 h of culture, suggesting that long-term reprogramming of gene expression had been induced. This provides a methodology for studying the de-differentiation of somatic cells that can potentially lead to an efficient way of reprogramming somatic cells to a pluripotent state without genetically altering them.  相似文献   
997.
Harrington ED  Jensen LJ  Bork P 《FEBS letters》2008,582(8):1251-1258
Continuing improvements in DNA sequencing technologies are providing us with vast amounts of genomic data from an ever-widening range of organisms. The resulting challenge for bioinformatics is to interpret this deluge of data and place it back into its biological context. Biological networks provide a conceptual framework with which we can describe part of this context, namely the different interactions that occur between the molecular components of a cell. Here, we review the computational methods available to predict biological networks from genomic sequence data and discuss how they relate to high-throughput experimental methods.  相似文献   
998.
Proton Nuclear Magnetic Resonance spectroscopy and Gas Chromatography Mass Spectrometry based metabolomics has been used in conjunction with multivariate statistics to examine the metabolic changes in Caenorhabditis elegans following the deletion of nuclear hormone receptor-49 (nhr-49). Deletion of the receptor produced profound changes in fatty acid metabolism, in particular an increase in the ratio of unsaturated to saturated fatty acids, a decrease in the concentration of glucose and increases in lactate and alanine. Given the proposed functional similarity between nhr-49 and the mammalian peroxisome proliferator-activated receptors (PPARs) these changes were compared with the metabolome of the PPAR-alpha null mouse. The metabolomic approach demonstrated a number of similarities including the regulation of lipid synthesis, beta-oxidation of fatty acids and changes in glycolysis/gluconeogenesis.  相似文献   
999.
We have recently reported that poly-SUMO-2/3 conjugates are subject to a ubiquitin-dependent proteolytic control in human cells. Here we show that arsenic trioxide (ATO) increases SUMO-2/3 modification of promyelocytic leukemia (PML) leading to its subsequent ubiquitylation in vivo. The SUMO-binding ubiquitin ligase RNF4 mediates this modification and causes disruption of PML nuclear bodies upon treatment with ATO. Reconstitution of SUMO-dependent ubiquitylation of PML by RNF4 in vitro and in a yeast trans vivo system revealed a preference of RNF4 for chain forming SUMOs. Polysumoylation of PML in response to ATO thus leads to its recognition and ubiquitylation by RNF4.  相似文献   
1000.
The intrinsically disordered translocation domain (T-domain) of the protein antibiotic colicin N binds to periplasmic receptors of target Escherichia coli cells in order to penetrate their inner membranes. We report here that the specific 27 consecutive residues of the T-domain of colicin N known to bind to the helper protein TolA in target cells also interacts intramolecularly with folded regions of colicin N. We suggest that this specific self-recognition helps intrinsically disordered domains to bury their hydrophobic recognition motifs and protect them against degradation, showing that an impaired self-recognition leads to increased protease susceptibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号