首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8633篇
  免费   1126篇
  国内免费   3373篇
  2024年   25篇
  2023年   181篇
  2022年   279篇
  2021年   497篇
  2020年   449篇
  2019年   518篇
  2018年   384篇
  2017年   357篇
  2016年   474篇
  2015年   585篇
  2014年   776篇
  2013年   738篇
  2012年   985篇
  2011年   864篇
  2010年   665篇
  2009年   615篇
  2008年   684篇
  2007年   706篇
  2006年   652篇
  2005年   534篇
  2004年   437篇
  2003年   353篇
  2002年   324篇
  2001年   206篇
  2000年   176篇
  1999年   154篇
  1998年   99篇
  1997年   54篇
  1996年   57篇
  1995年   43篇
  1994年   39篇
  1993年   29篇
  1992年   21篇
  1991年   30篇
  1990年   19篇
  1989年   7篇
  1988年   12篇
  1987年   14篇
  1986年   14篇
  1985年   16篇
  1984年   9篇
  1983年   9篇
  1982年   12篇
  1981年   4篇
  1980年   3篇
  1973年   2篇
  1972年   3篇
  1968年   2篇
  1961年   1篇
  1950年   7篇
排序方式: 共有10000条查询结果,搜索用时 106 毫秒
101.
本文对祁连山野生荷叶离褶伞Lyophyllum decastes子实体的化学成分和生物活性进行研究。采用硅胶色谱、高效液相色谱等多种方法进行分离纯化得到8个化合物,通过MS、NMR和电子圆二色谱 (ECD)等方法确定了化学结构,其中有4个为聚炔类化合物。化合物1作为天然产物系首次报道,其相绝对构型是通过比较ECD的方法确定。对所得聚炔类化合物应用细胞模型进行抗氧化活性(CAA)指标检测,化合物1-4均呈现一定抗氧化活性,其中化合物1的抗氧化活性最强,其EC50为(24.73±6.12)μmol/L。聚炔类化合物1-4为荷叶离褶伞首次报道成分,可作为祁连山野生荷叶离褶伞HPLC-DAD化学表征参考化合物。  相似文献   
102.
韩一多  向梅春  刘杏忠 《菌物学报》2020,39(12):2268-2276
虎杖象甲培植共生真菌形成的共生体系是植菌昆虫菌业中的典型代表。共生真菌Penicillium herquei如何向虎杖象甲Euops chinensis提供营养尚未明确。本研究发现共生真菌P. herquei的菌丝表面存在大量瘤状凸起物及由凸起物衍生的附属丝等特化结构,该结构可能为虎杖象甲提供营养;对共生真菌的营养研究表明,共生真菌能高效利用山梨醇、蔗糖、海藻糖、葡萄糖等单糖或双糖,以及酪氨酸、甘氨酸、谷氨酰胺等昆虫非必须氨基酸,同时在高碳和最适碳源条件下有利于菌丝特化附属物的产生。研究结果不仅提供了植菌卷叶象甲菌业中共生真菌在营养方面的适应性进化证据,而且为进一步揭示共生真菌适应卷叶象甲的营养机制奠定了基础。  相似文献   
103.
从一株特殊生境荒漠药用植物沙蓬的内生真菌Rhinocladiella similis中分离得到4个苯甲酸大环内酯化合物,包括2个新化合物rhinoclactones E(2)和F(1)、2个已知化合物8,9-dihyrogreensporone D(3)和8,9-dihydrogreensporone A(4)。基于高分辨质谱与核磁共振谱数据以及相关文献比对,确定了新化合物与已知化合物的结构。化合物1和2是一对立体异构体,在大环内酯环中并有一个呋喃环,这种环系统在自然界比较稀少。化合物1-4对3株肿瘤细胞株和植物病原真菌没有抑制活性。本结果进一步丰富了该真菌的化学成分研究,暗示特殊生境荒漠植物内生真菌具有产生结构新颖的次级代谢产物的潜力,是发现新活性天然产物的一个新的重要宝库;此外,根据化合物的结构特征与生物活性结果,本文还探讨了这些化合物潜在的生态学功能。  相似文献   
104.
Glioblastoma (GBM) is a malignant intracranial tumour with the highest proportion and lethality. It is characterized by invasiveness and heterogeneity. However, the currently available therapies are not curative. As an essential environmental cue that maintains glioma stem cells, hypoxia is considered the cause of tumour resistance to chemotherapy and radiation. Growing evidence shows that immunotherapy focusing on the tumour microenvironment is an effective treatment for GBM; however, the current clinicopathological features cannot predict the response to immunotherapy and provide accurate guidance for immunotherapy. Based on the ESTIMATE algorithm, GBM cases of The Cancer Genome Atlas (TCGA) data set were classified into high‐ and low‐immune/stromal score groups, and a four‐gene tumour environment‐related model was constructed. This model exhibited good efficiency at forecasting short‐ and long‐term prognosis and could also act as an independent prognostic biomarker. Additionally, this model and four of its genes (CLECL5A, SERPING1, CHI3L1 and C1R) were found to be associated with immune cell infiltration, and further study demonstrated that these four genes might drive the hypoxic phenotype of perinecrotic GBM, which affects hypoxia‐induced glioma stemness. Therefore, these might be important candidates for immunotherapy of GBM and deserve further exploration.  相似文献   
105.
Brassica rapa L., also called NIUMA, is used empirically in Tibetan medicine for its antioxidant, anti‐inflammatory and antiradiation activities. This study explored the hepatoprotective effects of B. rapa polysaccharides (BRPs) on acute liver injury induced by carbon tetrachloride (CCl4) in mice and the underlying mechanisms. Mice were treated with CCl4 after the oral administration of BRPs (55, 110 and 220 mg/kg) or bifendate (100 mg/kg) for 7 days. Blood and liver samples of mice were collected for analysis after 24 h. The ALP, ALT and AST levels and the biological activities of SOD, MDA and GSH?Px were measured. Histopathological changes in the liver were determined through hematoxylin and eosin staining. Moreover, TNF‐α, IL‐1β and IL‐6 expression levels were detected by commercial reagent kits. Finally, Western blot analysis was used to check the relative expression levels of caspase‐3, p‐JAK2 and p‐STAT3. The BRP pre‐treatment significantly decreased the enzymatic activities of ALT, ALP and AST in the serum, markedly increased the activities of SOD and GSH?Px in the liver and reduced the MDA concentration in the liver. BRPs alleviated hepatocyte injury and markedly inhibited the expression of TNF‐α, IL‐1β and IL‐6, also downregulating the CCl4‐induced hepatic tissue expression of caspase‐3. Furthermore, BRPs inhibited the JAK2/STAT3 signaling pathway in a dose‐dependent manner in the liver. This study demonstrated that BRPs exert hepatoprotective effect against the CCl4‐induced liver injury via modulating the apoptotic and inflammatory responses and downregulating the JAK2/STAT3 signaling pathway. Therefore, B. rapa could be considered a hepatoprotective medicine.  相似文献   
106.
The precision evaluation of prognosis is crucial for clinical treatment decision of bladder cancer (BCa). Therefore, establishing an effective prognostic model for BCa has significant clinical implications. We performed WGCNA and DEG screening to initially identify the candidate genes. The candidate genes were applied to construct a LASSO Cox regression analysis model. The effectiveness and accuracy of the prognostic model were tested by internal/external validation and pan‐cancer validation and time‐dependent ROC. Additionally, a nomogram based on the parameter selected from univariate and multivariate cox regression analysis was constructed. Eight genes were eventually screened out as progression‐related differentially expressed candidates in BCa. LASSO Cox regression analysis identified 3 genes to build up the outcome model in E‐MTAB‐4321 and the outcome model had good performance in predicting patient progress free survival of BCa patients in discovery and test set. Subsequently, another three datasets also have a good predictive value for BCa patients' OS and DFS. Time‐dependent ROC indicated an ideal predictive accuracy of the outcome model. Meanwhile, the nomogram showed a good performance and clinical utility. In addition, the prognostic model also exhibits good performance in pan‐cancer patients. Our outcome model was the first prognosis model for human bladder cancer progression prediction via integrative bioinformatics analysis, which may aid in clinical decision‐making.  相似文献   
107.
108.
Conditionally replicative adenoviruses (CRAds) were promising approach for solid tumour treatment, but its oncolytic efficiency and toxicity are still not satisfactory for further clinical application. Here, we developed the CAIX promotor (CAIXpromotor)‐controlled CRAd armed with a tumour suppressor absent in melanoma 2 (AIM2) to enhance its oncolytic potency. The CAIXpromotor‐AIM2 adenoviruses (Ad‐CAIXpromotor‐AIM2) could efficiently express E1A and AIM2 in renal cancer cells. Compared with Ad‐CAIXpromotor, Ad‐CAIXpromotor‐AIM2 significantly inhibited cell proliferation and enhanced cell apoptosis and cell killing, thus resulting in the oncolytic efficiency in 786‐O cells or OSRC‐2 cells. To explore the therapeutic effect, various Ads were intratumourally injected into OSRC‐2‐xenograft mice. The tumour growth was remarkably inhibited in Ad‐CAIXpromotor‐AIM2‐treated group as demonstrated by reduced tumour volume and weight with a low toxicity. The inflammasome inhibitor YVAD‐CMK resulted in the reduction of anti‐tumour activity by Ad‐CAIXpromotor‐AIM2 in vitro or in vivo, suggesting that inflammasome activation response was required for the enhanced therapeutic efficiency. Furthermore, lung metastasis of renal cancer mice was also suppressed by Ad‐CAIXpromotor‐AIM2 treatment accompanied by the decreased tumour fossil in lung tissues. These results indicated that the tumour‐specific Ad‐CAIXpromotor‐AIM2 could be applied for human renal cancer therapy. The therapeutic strategy of AIM2‐based CRAds could be a potential and promising approach for the therapy of primary solid or metastasis tumours.  相似文献   
109.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   
110.
Alloy materials such as Si and Ge are attractive as high‐capacity anodes for rechargeable batteries, but such anodes undergo severe capacity degradation during discharge–charge processes. Compared to the over‐emphasized efforts on the electrode structure design to mitigate the volume changes, understanding and engineering of the solid‐electrolyte interphase (SEI) are significantly lacking. This work demonstrates that modifying the surface of alloy‐based anode materials by building an ultraconformal layer of Sb can significantly enhance their structural and interfacial stability during cycling. Combined experimental and theoretical studies consistently reveal that the ultraconformal Sb layer is dynamically converted to Li3Sb during cycling, which can selectively adsorb and catalytically decompose electrolyte additives to form a robust, thin, and dense LiF‐dominated SEI, and simultaneously restrain the decomposition of electrolyte solvents. Hence, the Sb‐coated porous Ge electrode delivers much higher initial Coulombic efficiency of 85% and higher reversible capacity of 1046 mAh g?1 after 200 cycles at 500 mA g?1, compared to only 72% and 170 mAh g?1 for bare porous Ge. The present finding has indicated that tailoring surface structures of electrode materials is an appealing approach to construct a robust SEI and achieve long‐term cycling stability for alloy‐based anode materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号