首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1474篇
  免费   121篇
  国内免费   1篇
  2021年   32篇
  2020年   13篇
  2019年   20篇
  2018年   24篇
  2017年   25篇
  2016年   45篇
  2015年   76篇
  2014年   70篇
  2013年   93篇
  2012年   131篇
  2011年   128篇
  2010年   68篇
  2009年   63篇
  2008年   82篇
  2007年   92篇
  2006年   92篇
  2005年   80篇
  2004年   62篇
  2003年   75篇
  2002年   67篇
  2001年   20篇
  2000年   11篇
  1999年   19篇
  1998年   10篇
  1997年   11篇
  1996年   13篇
  1994年   8篇
  1993年   8篇
  1992年   9篇
  1990年   8篇
  1989年   9篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1983年   3篇
  1982年   9篇
  1981年   7篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   8篇
  1975年   6篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   5篇
  1969年   3篇
  1967年   4篇
排序方式: 共有1596条查询结果,搜索用时 46 毫秒
21.
22.
Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011) which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to signalling. is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular release events (puffs). We derive analytical expressions for a mechanistic model, based on recent data from live cell imaging, and calculate spike statistics in dependence on cellular parameters like stimulus strength or number of channels. The new approach substantiates a generic model, which is a very convenient way to simulate spike sequences with correct spiking statistics.  相似文献   
23.
Brewers’ spent grain (BSG) is a low‐cost by‐product of the brewing process. BSG liquor names the liquid components of BSG, mainly glucose, maltose, and long‐chain α‐1,4‐glycosidic bond glucose oligomers. These substances should be separated in existing BSG biorefineries, as they might lead to an increased formation of microbe‐inhibiting compounds in well‐established hydrothermal/enzymatic saccharification processes. In most cases, this liquid fraction is discarded. The present study presents for the first time an optimized process with BSG liquor for the purpose of producing bulk chemicals (e.g., lactate) in relevant concentrations. The process comprises the application of yeast extract, produced from own brewing processes, as the sole supplemented complex constituent in a simultaneous fermentation and saccharification process. Kinetic parameters for the final optimized process conditions with the organism Lactobacillus delbrueckii subsp. lactis were: maximum specific growth rate µmax  =  0.47 h?1, maximum lactate concentration cLac, max  =  79.06 g L?1, process yield YPS  =  0.89 gLac gSugar?1, lactate production rate qP  =  4.18 gLac gCDW?1 h?1, and productivity P 15 h  =  4.93 gLac L?1 h?1. BSG liquor, linked with yeast extract from Brewers’ yeast, can be a promising substrate for further bioprocess engineering tasks and contribute to a holistic and sustainable usage of Brewers’ spent grain.  相似文献   
24.
25.
The aged systemic milieu promotes cellular and cognitive impairments in the hippocampus. Here, we report that aging of the hematopoietic system directly contributes to the pro‐aging effects of old blood on cognition. Using a heterochronic hematopoietic stem cell (HSC) transplantation model (in which the blood of young mice is reconstituted with old HSCs), we find that exposure to an old hematopoietic system inhibits hippocampal neurogenesis, decreases synaptic marker expression, and impairs cognition. We identify a number of factors elevated in the blood of young mice reconstituted with old HSCs, of which cyclophilin A (CyPA) acts as a pro‐aging factor. Increased systemic levels of CyPA impair cognition in young mice, while inhibition of CyPA in aged mice improves cognition. Together, these data identify age‐related changes in the hematopoietic system as drivers of hippocampal aging.  相似文献   
26.
The ability to construct novel enzymes is a major aim in de novo protein design. A popular enzyme fold for design attempts is the TIM barrel. This fold is a common topology for enzymes and can harbor many diverse reactions. The recent de novo design of a four‐fold symmetric TIM barrel provides a well understood minimal scaffold for potential enzyme designs. Here we explore opportunities to extend and diversify this scaffold by adding a short de novo helix on top of the barrel. Due to the size of the protein, we developed a design pipeline based on computational ab initio folding that solves a less complex sub‐problem focused around the helix and its vicinity and adapt it to the entire protein. We provide biochemical characterization and a high‐resolution X‐ray structure for one variant and compare it to our design model. The successful extension of this robust TIM‐barrel scaffold opens opportunities to diversify it towards more pocket like arrangements and as such can be considered a building block for future design of binding or catalytic sites.  相似文献   
27.
28.
The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence.Nicotine is the main psychoactive ingredient of tobacco (1). By acting on the nicotinic acetylcholine receptors located in diverse brain areas, nicotine generates psychoactive effects such as euphoria, reduced stress, increased energy, and enhanced cognitive functions (2). Chronic nicotine use alters various aspects of neurochemical transmission and has a strong impact on diverse physiological processes (2), resulting in drug-seeking and drug-taking behaviors for normal smokers and for a considerable number of patients suffering from schizophrenia and Alzheimer disease, who use nicotine for self-medication (3, 4). The dorsal striatum (DS)1 is one of the key brain regions that has been associated with neural regulation during chronic nicotine exposure (5). In particular, the DS is involved in habit formation during the preoccupation/craving (later) phase of nicotine dependence characterized by compulsive drug-taking (6). Behavioral changes associated with nicotine dependence have been linked to small molecule neurotransmitter systems, including the glutamate and dopamine system in the DS (7). The DS is also known to contain diverse neuropeptides, many of which are probably critical mediators of physiological processes that are associated with nicotine, such as the regulation of reinforcement and energy metabolism. However, neuropeptides have not been extensively investigated in the DS during long periods of nicotine administration.Immunoassay studies have shown that neuropeptides, including substance P, neuropeptide Y, and opioid peptides, including the enkephalins, are expressed by inhibitory neurons (8), which make up a large majority of the neurons in the DS (9). Many of these inhibitory GABAergic neurons express nicotinic cholinergic receptors (10), suggesting that nicotine administration may regulate their activity, leading to variations in the release of neuropeptides, as well as the inhibitory neurotransmitter GABA. Previous investigations of peptide regulation during chronic nicotine administration in the striatum have exclusively focused on the class of opioid peptides, which are thought to play an important role in the control of diverse physiological processes, including reward processing, nociception, and regulation of emotions (11, 12). Available studies have focused on the analysis of three opioid peptides, their precursors, or receptors as follows: met-enkephalin, dynorphin, and β-endorphin, using conventional techniques like immunoassays (13, 14). There is considerable variability in reported changes of peptide levels in the striatum during chronic nicotine administration. For example, when animals are treated with 1 mg/kg free base nicotine (daily for 14 days), met-enkephalin increased in the striatum (15). By contrast, met-enkephalin is reduced in the striatum when rats are treated with 0.3 mg/kg nicotine (three times/day for 14 days) (16). A number of factors might contribute to this observed variability, including the exact dosing, daily frequency, time span of administration, and delivery method of nicotine. Furthermore, as individual studies have each so far generally examined a single opioid peptide, there is currently little reliable information about peptide co-regulation, even for these well studied opioid peptides. In addition to these opioid peptides, the DS expresses peptides from other peptide families, which are also potential targets under the regulation of chronic nicotine treatment. So far, however, there is no information available about changes of these non-opioid peptides during chronic nicotine administration.In this study, our aim was to use a neuropeptidomics approach (17) to provide a comprehensive characterization of dorsal striatal neuropeptides after long term nicotine chronic treatment in adult rats using oral administration. The main advantage of this approach is that it allows the simultaneous monitoring of many peptides from the same brain tissue derived from a single drug protocol. We used a combination of a robust sample preparation method (18), high accuracy LC-MS analysis (19, 20), and the use of multiple synthetic internal standards (21) to compare peptide levels in the DS between chronic nicotine and control animals. Our peptidome analysis determined 14 peptides exhibiting significant changes following chronic nicotine administration. Among these peptides were members of the opioid family that had previously been associated with nicotine dependence, as well as a number of newly identified peptides, including members of the secretogranin, cholecystokinin, and somatostatin families. This greatly expands the present scope of peptide involvement in drug dependence in the dorsal striatum.  相似文献   
29.
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis.  相似文献   
30.
The stability of ecological communities depends strongly on quantitative characteristics of population interactions (type‐II vs. type‐III functional responses) and the distribution of body masses across species. Until now, these two aspects have almost exclusively been treated separately leaving a substantial gap in our general understanding of food webs. We analysed a large data set of arthropod feeding rates and found that all functional‐response parameters depend on the body masses of predator and prey. Thus, we propose generalised functional responses which predict gradual shifts from type‐II predation of small predators on equally sized prey to type‐III functional‐responses of large predators on small prey. Models including these generalised functional responses predict population dynamics and persistence only depending on predator and prey body masses, and we show that these predictions are strongly supported by empirical data on forest soil food webs. These results help unravelling systematic relationships between quantitative population interactions and large‐scale community patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号