首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   920篇
  免费   86篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   30篇
  2020年   14篇
  2019年   17篇
  2018年   21篇
  2017年   25篇
  2016年   43篇
  2015年   54篇
  2014年   53篇
  2013年   60篇
  2012年   79篇
  2011年   73篇
  2010年   35篇
  2009年   44篇
  2008年   45篇
  2007年   68篇
  2006年   61篇
  2005年   58篇
  2004年   40篇
  2003年   46篇
  2002年   52篇
  2001年   5篇
  2000年   3篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   4篇
  1995年   1篇
  1994年   7篇
  1993年   6篇
  1992年   7篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1967年   1篇
  1966年   1篇
  1958年   1篇
排序方式: 共有1006条查询结果,搜索用时 15 毫秒
51.
The aim of the present study was to identify and characterize hemispheric lateralization for pain intensity perception. A sample of 351 healthy volunteers was tested by the immersion of the right hand for 10 s followed by the same test for the left hand (RL group; n = 199) or in a random sequence (RND group; n = 152) into a water bath (48 degrees C, 15 s). Pain intensity was self-reported by the Visual Analogue Scale (VAS). The motor hemispherical Lateralization Index (LI) was obtained by the Edinburgh Inventory. Gender, hand skin fold, interstimulus time and menstrual cycle data in case of female subjects were recorded. The sample, 60.7% females and 39.3% males, 20.4 +/- 0.18 (mean +/- SEM) years old, showed 92.1% right-handed subjects. Left hand VAS was significantly higher than right hand VAS for RL (7.24 +/- 1.31 vs 6.74 +/- 1.52; p < 0.01) and RND (7.24 +/- 0.82 vs 6.73 +/- 1.25; p < 0.01) both for right- and left-handed subjects. A low but significant correlation for VAS scores and LI was found (r = 0.14; p < 0.05 or r = 0.18; p < 0.05, for left or right hand, respectively). Skin fold was statistically similar in both hands (p > 0.05) being highly correlated with each other (r = 0.68; p < 0.05). Pain subjective perception was not correlated to interstimulus time (r = -0.01; p > 0.05). Females showed significantly higher values than males for both left and right hand VAS scores. Periovulatory phase VAS value was significantly higher than luteal phase VAS only for the right hand test (7.57 +/- 0.20 vs 6.47 +/- 0.33; p < 0.01). The results of the present study suggest a lateralization of pain intensity perception to the right hemisphere not correlated with the motor hemispheric lateralization.  相似文献   
52.
Camp RL  Chung GG  Rimm DL 《Nature medicine》2002,8(11):1323-1327
The recent development of tissue microarrays-composed of hundreds of tissue sections from different tumors arrayed on a single glass slide-facilitates rapid evaluation of large-scale outcome studies. Realization of this potential depends on the ability to rapidly and precisely quantify the protein expression within each tissue spot. We have developed a set of algorithms that allow the rapid, automated, continuous and quantitative analysis of tissue microarrays, including the separation of tumor from stromal elements and the sub-cellular localization of signals. Validation studies using estrogen receptor in breast carcinoma show that automated analysis matches or exceeds the results of conventional pathologist-based scoring. Automated analysis and sub-cellular localization of beta-catenin in colon cancer identifies two novel, prognostically significant tumor subsets, not detected by traditional pathologist-based scoring. Development of automated analysis technology empowers tissue microarrays for use in discovery-type experiments (more typical of cDNA microarrays), with the added advantage of inclusion of long-term demographic and patient outcome information.  相似文献   
53.
54.
Competitive synaptic remodeling is an important feature of developmental plasticity, but the molecular mechanisms remain largely unknown. Calcium/calmodulin-dependent protein kinase II (CaMKII) can induce postsynaptic changes in synaptic strength. We show that postsynaptic CaMKII also generates structural synaptic rearrangements between cultured cortical neurons. Postsynaptic expression of activated CaMKII (T286D) increased the strength of transmission between pairs of pyramidal neuron by a factor of 4, through a modest increase in quantal amplitude and a larger increase in the number of synaptic contacts. Concurrently, T286D reduced overall excitatory synaptic density and increased the proportion of unconnected pairs. This suggests that connectivity from some synaptic partners was increased while other partners were eliminated. The enhancement of connectivity required activity and NMDA receptor activation, while the elimination did not. These data suggest that postsynaptic activation of CaMKII induces a structural remodeling of presynaptic inputs that favors the retention of active presynaptic partners.  相似文献   
55.
Structural maintenance of chromosomes (SMC) proteins function in chromosome condensation and several other aspects of DNA processing. They are large proteins characterized by an NH2-terminal nucleotide triphosphate (NTP)-binding domain, two long segments of coiled coil separated by a hinge, and a COOH-terminal domain. Here, we have visualized by EM the SMC protein from Bacillus subtilis (BsSMC) and MukB from Escherichia coli, which we argue is a divergent SMC protein. Both BsSMC and MukB show two thin rods with globular domains at the ends emerging from the hinge. The hinge appears to be quite flexible: the arms can open up to 180°, separating the terminal domains by 100 nm, or close to near 0°, bringing the terminal globular domains together.A surprising observation is that the ∼300–amino acid–long coiled coils are in an antiparallel arrangement. Known coiled coils are almost all parallel, and the longest antiparallel coiled coils known previously are 35–45 amino acids long. This antiparallel arrangement produces a symmetrical molecule with both an NH2- and a COOH-terminal domain at each end. The SMC molecule therefore has two complete and identical functional domains at the ends of the long arms. The bifunctional symmetry and a possible scissoring action at the hinge should provide unique biomechanical properties to the SMC proteins.  相似文献   
56.
57.
58.
59.
A fundamental challenge to contemporary genetics is to distinguish rare missense alleles that disrupt protein functions from the majority of alleles neutral on protein activities. High-throughput experimental tools to securely discriminate between disruptive and non-disruptive missense alleles are currently missing. Here we establish a scalable cell-based strategy to profile the biological effects and likely disease relevance of rare missense variants in vitro. We apply this strategy to systematically characterize missense alleles in the low-density lipoprotein receptor (LDLR) gene identified through exome sequencing of 3,235 individuals and exome-chip profiling of 39,186 individuals. Our strategy reliably identifies disruptive missense alleles, and disruptive-allele carriers have higher plasma LDL-cholesterol (LDL-C). Importantly, considering experimental data refined the risk of rare LDLR allele carriers from 4.5- to 25.3-fold for high LDL-C, and from 2.1- to 20-fold for early-onset myocardial infarction. Our study generates proof-of-concept that systematic functional variant profiling may empower rare variant-association studies by orders of magnitude.  相似文献   
60.
It is now well established that in yeast, and likely most eukaryotic organisms, initial DNA replication of the leading strand is by DNA polymerase ε and of the lagging strand by DNA polymerase δ. However, the role of Pol δ in replication of the leading strand is uncertain. In this work, we use a reporter system in Saccharomyces cerevisiae to measure mutation rates at specific base pairs in order to determine the effect of heterozygous or homozygous proofreading-defective mutants of either Pol ε or Pol δ in diploid strains. We find that wild-type Pol ε molecules cannot proofread errors created by proofreading-defective Pol ε molecules, whereas Pol δ can not only proofread errors created by proofreading-defective Pol δ molecules, but can also proofread errors created by Pol ε-defective molecules. These results suggest that any interruption in DNA synthesis on the leading strand is likely to result in completion by Pol δ and also explain the higher mutation rates observed in Pol δ-proofreading mutants compared to Pol ε-proofreading defective mutants. For strains reverting via AT→GC, TA→GC, CG→AT, and GC→AT mutations, we find in addition a strong effect of gene orientation on mutation rate in proofreading-defective strains and demonstrate that much of this orientation dependence is due to differential efficiencies of mispair elongation. We also find that a 3′-terminal 8 oxoG, unlike a 3′-terminal G, is efficiently extended opposite an A and is not subject to proofreading. Proofreading mutations have been shown to result in tumor formation in both mice and humans; the results presented here can help explain the properties exhibited by those proofreading mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号