首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4546篇
  免费   400篇
  国内免费   1篇
  2021年   61篇
  2020年   39篇
  2019年   44篇
  2018年   87篇
  2017年   58篇
  2016年   99篇
  2015年   176篇
  2014年   223篇
  2013年   228篇
  2012年   334篇
  2011年   294篇
  2010年   192篇
  2009年   175篇
  2008年   242篇
  2007年   268篇
  2006年   242篇
  2005年   246篇
  2004年   203篇
  2003年   231篇
  2002年   203篇
  2001年   76篇
  2000年   50篇
  1999年   45篇
  1998年   50篇
  1997年   46篇
  1996年   37篇
  1995年   40篇
  1994年   28篇
  1993年   33篇
  1992年   27篇
  1991年   39篇
  1990年   55篇
  1989年   38篇
  1988年   40篇
  1987年   37篇
  1986年   35篇
  1985年   25篇
  1984年   31篇
  1983年   26篇
  1982年   26篇
  1981年   33篇
  1980年   24篇
  1979年   19篇
  1978年   27篇
  1977年   22篇
  1975年   19篇
  1974年   26篇
  1973年   20篇
  1969年   18篇
  1967年   17篇
排序方式: 共有4947条查询结果,搜索用时 189 毫秒
151.
Anterior shear has been implicated as a risk factor in spinal injuries. A 3D nonlinear poroelastic finite element model study of a lumbar motion segment L4-L5 was performed to predict the temporal shear response under various single and combined shear loads. Effects of nucleotomy and facetectomy as well as changes in the posture and facet gap distance were analyzed as well.  相似文献   
152.
153.
Rv2140c is one of many conserved Mycobacterium tuberculosis proteins for which no molecular function has been identified. We have determined a high-resolution crystal structure of the Rv2140c gene product, which reveals a dimeric complex that shares strong structural homology with the phosphatidylethanolamine-binding family of proteins. Rv2140c forms low-millimolar interactions with a selection of soluble phosphatidylethanolamine analogs, indicating that it has a role in lipid metabolism. Furthermore, the small molecule locostatin binds to the Rv2140c ligand-binding site and also inhibits the growth of the model organism Mycobacterium smegmatis.  相似文献   
154.
Despite the monarch butterfly (Danaus plexippus) being famous for its adaptations to the defensive traits of its milkweed host plants, little is known about the macroevolution of these traits. Unlike most other animal species, monarchs are largely insensitive to cardenolides, because their target site, the sodium pump (Na+/K+‐ATPase), has evolved amino acid substitutions that reduce cardenolide binding (so‐called target site insensitivity, TSI). Because many, but not all, species of milkweed butterflies (Danaini) are associated with cardenolide‐containing host plants, we analyzed 16 species, representing all phylogenetic lineages of milkweed butterflies, for the occurrence of TSI by sequence analyses of the Na+/K+‐ATPase gene and by enzymatic assays with extracted Na+/K+‐ATPase. Here we report that sensitivity to cardenolides was reduced in a stepwise manner during the macroevolution of milkweed butterflies. Strikingly, not all Danaini typically consuming cardenolides showed TSI, but rather TSI was more strongly associated with sequestration of toxic cardenolides. Thus, the interplay between bottom‐up selection by plant compounds and top‐down selection by natural enemies can explain the evolutionary sequence of adaptations to these toxins.  相似文献   
155.
156.
We present the software Peak INTegration (PINT), designed to perform integration of peaks in NMR spectra. The program is very simple to run, yet powerful enough to handle complicated spectra. Peaks are integrated by fitting predefined line shapes to experimental data and the fitting can be customized to deal with, for instance, heavily overlapped peaks. The results can be inspected visually, which facilitates systematic optimization of the line shape fitting. Finally, integrated peak volumes can be used to extract parameters such as relaxation rates and information about low populated states. The utility of PINT is demonstrated by applications to the 59 residue SH3 domain of the yeast protein Abp1p and the 289 residue kinase domain of murine EphB2.  相似文献   
157.
158.
We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein–protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems‐level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14‐protein core network critical to the viability of multiple EGFR‐mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR‐mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.  相似文献   
159.
160.
With the increasing prevalence of antibiotic resistance, antimicrobial enzymes aimed at the disruption of bacterial cellular machinery and biofilm formation are under intense investigation. Several enzyme-based products have already been commercialized for application in the healthcare, food and biomedical industries. Successful removal of complex biofilms requires the use of multi-enzyme formulations that contain enzymes capable of degrading microbial DNA, polysaccharides, proteins and quorum-sensing molecules. The inclusion of anti-quorum sensing enzymes prevents biofilm reformation. The development of effective complex enzyme formulations is urgently needed to deal with the problems associated with biofilm formation in manufacturing, environmental protection and healthcare settings. Nevertheless, advances in synthetic biology, enzyme engineering and whole DNA-Sequencing technologies show great potential to facilitate the development of more effective antimicrobial and anti-biofilm enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号