首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   16篇
  2023年   2篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2016年   5篇
  2015年   2篇
  2014年   11篇
  2013年   13篇
  2012年   11篇
  2011年   7篇
  2010年   8篇
  2009年   8篇
  2008年   13篇
  2007年   12篇
  2006年   9篇
  2005年   6篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
11.
Cell morphogenesis is of fundamental significance in all eukaryotes for development, differentiation, and cell proliferation. In fission yeast, Drosophila Furry-like Mor2 plays an essential role in cell morphogenesis in concert with the NDR/Tricornered kinase Orb6. Mutations of these genes result in the loss of cell polarity. Here we show that the conserved proteins, MO25-like Pmo25, GC kinase Nak1, Mor2, and Orb6, constitute a morphogenesis network that is important for polarity control and cell separation. Intriguingly, Pmo25 was localized at the mitotic spindle pole bodies (SPBs) and then underwent translocation to the dividing medial region upon cytokinesis. Pmo25 formed a complex with Nak1 and was required for both the localization and kinase activity of Nak1. Pmo25 and Nak1 in turn were essential for Orb6 kinase activity. Further, the Pmo25 localization at the SPBs and the Nak1-Orb6 kinase activities during interphase were under the control of the Cdc7 and Sid1 kinases in the septation initiation network (SIN), suggesting a functional linkage between SIN and the network for cell morphogenesis/separation following cytokinesis.  相似文献   
12.
Experimental data and clinical observations suggest that delaying childbearing influences the biology of the mother-fetus relationship, with a negative effect on fetal development and predisposition to severe diseases such as type 1 diabetes. We reason that advanced maternal age may influence intrauterine selection, favoring genotypes that are more adapted to the intrauterine environment of less young women. In the present study we have investigated the relationship of maternal age to HP genotype and PGM1-Rh area (chromosome 1) that have been previously found to be associated with fertility and developmental parameters. HP phenotype was determined in 679 consecutive puerperae from the population of central Italy. PGM1 phenotype and Rh C phenotype were determined in 222 puerperae and 200 newborns. The HP 1,1 phenotype decreases and the HP 2,2 phenotype increases with maternal age. The proportion of phenotypes carrying both the Rh C and PGM1*1 alleles is much higher in puerperae older than 36 years than in puerperae of age 22 years. The frequency of the PGM1*1-Rh C haplotype increases and the frequency of the PGM1*2-Rh C haplotype decreases with maternal age. The changes in these genetic systems with advancing maternal age are similar in mothers and newborns. The delay of childbearing age, associated in Western countries with the fertility transition in addition to detrimental effects on intrauterine development and increased susceptibility to severe disorders, could bring about changes in the genetic composition of a population.  相似文献   
13.
Most of the finite element models of bones used in orthopaedic biomechanics research are based on generic anatomies. However, in many cases it would be useful to generate from CT data a separate finite element model for each subject of a study group. In a recent study a hexahedral mesh generator based on a grid projection algorithm was found very effective in terms of accuracy and automation. However, so far the use of this method has been documented only on data collected in vitro and only for long bones. The present study was aimed at verifying if this method represents a procedure for the generation of finite element models of human bones from data collected in vivo, robust, accurate, automatic and general enough to be used in clinical studies. Robustness, automation and numerical accuracy of the proposed method were assessed on five femoral CT data sets of patients affected by various pathologies. The generality of the method was verified by processing a femur, an ileum, a phalanx, a proximal femur reconstruction, and the micro-CT of a small sample of spongy bone. The method was found robust enough to cope with the variability of the five femurs, producing meshes with a numerical accuracy and a computational weight comparable to those found in vitro. Even when the method was used to process the other bones the levels of mesh conditioning remained within acceptable limits. Thus, it may be concluded that the method presents a generality sufficient to cope with almost any orthopaedic application.  相似文献   
14.
Elderly frequently present variable degrees of osteopenia, sarcopenia, and neuromotor control degradation. Severely osteoporotic patients sometime fracture their femoral neck when falling. Is it possible that such fractures might occur without any fall, but rather spontaneously while the patient is performing normal movements such as level walking? The aim of this study was to verify if such spontaneous fractures are biomechanically possible, and in such case, which conditions of osteoporosis, sarcopenia, and neuromotor degradation could produce them. To the purpose, a probabilistic multiscale body-organ model validated against controlled experiments was used to predict the risk of spontaneous fractures in a population of 80-years old women, with normal weight and musculoskeletal anatomy, and variable degree of osteopenia, sarcopenia, and neuromotor control degradation. A multi-body inverse dynamics sub-model, coupled to a probabilistic neuromuscular sub-model, and to a femur finite element sub-model, formed the multiscale model, which was run within a Monte Carlo stochastic scheme, where the various parameters were varied randomly according to well defined distributions. The model predicted that neither extreme osteoporosis, nor extreme neuromotor degradation alone are sufficient to predict spontaneous fractures. However, when the two factors are combined an incidence of 0.4% of spontaneous fractures is predicted for the simulated population, which is consistent with clinical reports. When the model represented only severely osteoporotic patients, the incidence of spontaneous fractures increased to 29%. Thus, is biomechanically possible that spontaneous femoral neck fractures occur during level walking, due to a combination of severe osteoporosis and severe neuromotor degradation.  相似文献   
15.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   
16.
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+.  相似文献   
17.
Galectin-1 is a 14 kDa beta-galactoside binding protein, capable of forming lattice-like structures with glycans of cellular glycoconjugates and inducing intracellular signaling. The expression of Galectin-1 in porcine cartilage is described in this work for the first time. Immunocytochemical methods revealed distinct distribution patterns for both articular and growth plate cartilage. In articular cartilage, the highest reactivity for Galectin-1 was found in all chondrocytes at the superficial zone and in most of those at the lower layer of the middle zone. In the growth plate, marked reactivity was seen in chondrocytes at the proliferative zone and reached a maximum level for the column-forming cells at the hypertrophic zone. In addition, different Galectin-1 distribution patterns were observed at the subcellular level. With regards to the metabolic effects of Galectin-1, the results in vitro seem to indicate an inhibitory effect of Galectin-1 on articular chondrocyte anabolism (i.e. inhibition of cell proliferation and anabolic gene expression) and a stimulation of catabolic processes (i.e. induction of matrix degradation and hypertrophy marker expression). These data represent a starting point for the understanding the molecular mechanisms underlining ECM-Galectin-1 interaction and the subsequent signaling-cell transduction processes involving cartilage formation and maturation.  相似文献   
18.
19.
We have studied the pattern of association between the season of conception and cytosolic low molecular weight phosphotyrosine phosphatase (ACP1) genetic polymorphism in 329 consecutively newborn infants from the population of Penne and 361 consecutively newborn infants from the population of Rome. In addition, 329 mothers were studied in the population of Penne. A concordant, highly significant association was observed in the two populations between ACP1 parameters and the season of conception of newborn infants. The total activity of ACP1 shows a minimum in infants conceived in January–February and a maximum in those conceived at the end of the solar year. Analysis of the joint mother-newborn ACP1 distribution in relation to the season of fertilisation has shown that among mothers carrying ACP1*A (the allele showing the lowest activity), the proportion of newborns carrying this allele is higher in those conceived in the first months of the year than in those conceived subsequently. Since ACP1 probably functions as a phosphotyrosine phosphatase and as a flavin mononucleotide phosphatase, low activity could enhance the metabolic rate and would be advantageous in a cold environment. The cycle of variation of ACP1 in infants follows the cycle of solar illumination. It is possible that individuals who have a genetic background allowing them to adapt easily and readily to seasonal demand are more successful in reproducing themselves. The population of zygotes conceived in a given season would therefore reproduce the pattern of gene combination more fit for that season. Received: 15 June 1997 / Accepted: 31 July 1997  相似文献   
20.
Subject-specific musculoskeletal modeling can be applied to study musculoskeletal disorders, allowing inclusion of personalized anatomy and properties. Independent of the tools used for model creation, there are unavoidable uncertainties associated with parameter identification, whose effect on model predictions is still not fully understood. The aim of the present study was to analyze the sensitivity of subject-specific model predictions (i.e., joint angles, joint moments, muscle and joint contact forces) during walking to the uncertainties in the identification of body landmark positions, maximum muscle tension and musculotendon geometry. To this aim, we created an MRI-based musculoskeletal model of the lower limbs, defined as a 7-segment, 10-degree-of-freedom articulated linkage, actuated by 84 musculotendon units. We then performed a Monte-Carlo probabilistic analysis perturbing model parameters according to their uncertainty, and solving a typical inverse dynamics and static optimization problem using 500 models that included the different sets of perturbed variable values. Model creation and gait simulations were performed by using freely available software that we developed to standardize the process of model creation, integrate with OpenSim and create probabilistic simulations of movement. The uncertainties in input variables had a moderate effect on model predictions, as muscle and joint contact forces showed maximum standard deviation of 0.3 times body-weight and maximum range of 2.1 times body-weight. In addition, the output variables significantly correlated with few input variables (up to 7 out of 312) across the gait cycle, including the geometry definition of larger muscles and the maximum muscle tension in limited gait portions. Although we found subject-specific models not markedly sensitive to parameter identification, researchers should be aware of the model precision in relation to the intended application. In fact, force predictions could be affected by an uncertainty in the same order of magnitude of its value, although this condition has low probability to occur.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号