首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   45篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   3篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   5篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   14篇
  2011年   21篇
  2010年   6篇
  2009年   11篇
  2008年   7篇
  2007年   6篇
  2006年   16篇
  2005年   4篇
  2004年   12篇
  2003年   10篇
  2002年   14篇
  2001年   14篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
  1960年   1篇
排序方式: 共有276条查询结果,搜索用时 156 毫秒
11.
The development of natural competence by bacteria in situ is considered one of the main factors limiting transformation-mediated gene exchanges in the environment. Ralstonia solanacearum is a plant pathogen that is also a naturally transformable bacterium that can develop the competence state during infection of its host. We have attempted to determine whether this bacterium could become the recipient of plant genes. We initially demonstrated that plant DNA was released close to the infecting bacteria. We constructed and tested various combinations of transgenic plants and recipient bacteria to show that the effectiveness of such transfers was directly related to the ratio of the complexity of the plant genome to the number of copies of the transgene.  相似文献   
12.
13.
General-diffusion porins form large β-barrel channels that control the permeability of the outer membrane of gram-negative bacteria to nutrients, some antibiotics, and external signals. Here, we have analyzed the effects of mutations in the OmpU porin of Vibrio cholerae at conserved residues that are known to affect pore properties in the Escherichia coli porins OmpF and OmpC. Various phenotypes were investigated, including sensitivity to β-lactam antibiotics, growth on large sugars, and sensitivity to and biofilm induction by sodium deoxycholate, a major bile component that acts as an external signal for multiple cellular responses of this intestinal pathogen. Overall, our results indicate that specific residues play different roles in controlling the passage of various compounds. Mutations of barrel wall arginine residues that protrude in the pore affect pore size and growth in the presence of large sugars or sodium deoxycholate. Sensitivity to large cephalosporins is mostly affected by D116, located on the L3 loop, whose homolog in E. coli, OmpF, is a known binding determinant for these drugs. L3 loop residues also affect biofilm induction. The results are interpreted in terms of a homology model based on the structures of E. coli porins.  相似文献   
14.
The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle stem cells results in the abrogation of adult muscle regenerative potential. We demonstrate that APC removal in adult muscle stem cells abolishes cell cycle entry and leads to cell death. By using double knockout strategies, we further prove that this phenotype is attributable to overactivation of β-catenin signaling. Our results demonstrate that in muscle stem cells, APC dampens canonical Wnt signaling to allow cell cycle progression and radically diverge from previous observations concerning stem cells in actively self-renewing tissues.  相似文献   
15.
16.
The study of the proteins that bind to telomeric DNA in mammals has provided a deep understanding of the mechanisms involved in chromosome-end protection. However, very little is known on the binding of these proteins to nontelomeric DNA sequences. The TTAGGG DNA repeat proteins 1 and 2 (TRF1 and TRF2) bind to mammalian telomeres as part of the shelterin complex and are essential for maintaining chromosome end stability. In this study, we combined chromatin immunoprecipitation with high-throughput sequencing to map at high sensitivity and resolution the human chromosomal sites to which TRF1 and TRF2 bind. While most of the identified sequences correspond to telomeric regions, we showed that these two proteins also bind to extratelomeric sites. The vast majority of these extratelomeric sites contains interstitial telomeric sequences (or ITSs). However, we also identified non-ITS sites, which correspond to centromeric and pericentromeric satellite DNA. Interestingly, the TRF-binding sites are often located in the proximity of genes or within introns. We propose that TRF1 and TRF2 couple the functional state of telomeres to the long-range organization of chromosomes and gene regulation networks by binding to extratelomeric sequences.  相似文献   
17.
The ongoing development of metagenomic approaches is providing the means to explore antibiotic resistance in nature and address questions that could not be answered previously with conventional culture-based strategies. The number of available environmental metagenomic sequence datasets is rapidly expanding and henceforth offer the ability to gain a more comprehensive understanding of antibiotic resistance at the global scale. Although there is now evidence that the environment constitutes a vast reservoir of antibiotic resistance gene determinants (ARGDs) and that the majority of ARGDs acquired by human pathogens may have an environmental origin, a better understanding of their diversity, prevalence and ecological significance may help predict the emergence and spreading of newly acquired resistances. Recent applications of metagenomic approaches to the study of ARGDs in natural environments such as soil should help overcome challenges concerning expanding antibiotic resistances.  相似文献   
18.
Bacteria belonging to the genus Wolbachia are obligatory microendocytobionts that infect a variety of arthropods and a majority of filarial nematode species, where they induce reproductive alterations or establish a mutualistic symbiosis. Although two whole genome sequences of Wolbachia pipientis, for strain wMel from Drosophila melanogaster and strain wBm from Brugia malayi, have been fully completed and six other genome sequencing projects are ongoing (http://www.genomesonline.org/index.cgi?want=Prokaryotic+Ongoin), genetic analyses of these bacteria are still scarce, mainly due to the inability to cultivate them outside of eukaryotic cells. Usually, a large amount of host tissue (a thousand individuals, or about 10 g) is required in order to purify Wolbachia and extract its DNA, which is often recovered in small amounts and contaminated by host cell DNA, thus hindering genomic studies. In this report, we describe an efficient and reliable procedure to representatively amplify the Wolbachia genome by multiple-displacement amplification from limited infected host tissue (0.2 g or 2 x 10(7) cells). We obtained sufficient amounts (8 to 10 microg) of DNA of suitable quality for genomic studies, and we demonstrated that the amplified DNA contained all of the Wolbachia loci targeted. In addition, our data indicated that the genome of strain wRi, an obligatory endosymbiont of Drosophila simulans, shares a similar overall architecture with its relative strain wMel.  相似文献   
19.
The lin genes encode the gamma-hexachlorocyclohexane (gamma-HCH or lindane) catabolic pathway in lindane-degrading strains. The location and stability of these genes have been explored in the lindane-degrading Sphingobium francense strain Sp+, and in two non-lindane-degrading mutants (Sp1- and Sp2-). The lin genes, linA, linB, linE and linX were localized by hybridization on three of the six plasmids of the S. francense strain Sp+ showing dispersal within the genome. The linC gene was detected by PCR, but was not detected by hybridization on any of the plasmids. The hybridization of the linA and linX genes was negative with the two non-lindane-degrading mutants S. francense strains, Sp1- and Sp2-. The dynamic of this genome associated with gene loss and acquisition, and plasmid rearrangement was explored by a search for associated insertion sequences. A new insertion sequence, ISSppa4, belonging to the IS21 family was detected and compared with IS6100 and ISsp1. Insertion sequence localization was explored on different hybridization patterns (plasmid, total genome) with the lindane-degrading Sp+ strain and the two non-degrading derivatives (Sp1-, Sp2-). Insertion sequence movement and plasmid rearrangement could explain the emergence of the non-lindane-degrading mutants.  相似文献   
20.
In soil, fungal colonization of plant roots has been traditionally studied by indirect methods such as microbial isolation that do not enable direct observation of infection sites or of interactions between fungal pathogens and their antagonists. Confocal laser scanning microscopy was used to visualize the colonization of tomato roots in heat-treated soil and to observe the interactions between a nonpathogenic strain, Fo47, and a pathogenic strain, Fol8, inoculated onto tomato roots in soil. When inoculated separately, both fungi colonized the entire root surface, with the exception of the apical zone. When both strains were introduced together, they both colonized the root surface and were observed at the same locations. When Fo47 was introduced at a higher concentration than Fol8, it colonized much of the root surface, but hyphae of Fol8 could still be observed at the same location on the root. There was no exclusion of the pathogenic strain by the presence of the nonpathogenic strain. These results are not consistent with the hypothesis that specific infection sites exist on the root for Fusarium oxysporum and instead support the hypothesis that competition occurs for nutrients rather than for infection sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号