首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   14篇
  2012年   13篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   15篇
  2007年   10篇
  2006年   14篇
  2005年   16篇
  2004年   14篇
  2003年   7篇
  2002年   3篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1978年   1篇
  1977年   1篇
  1975年   4篇
排序方式: 共有233条查询结果,搜索用时 546 毫秒
121.
The new complex compounds [RuLCl(p‐cymene)] ? 3H2O and [NiL2(H2O)2] ? 3H2O (L: 1‐{4‐[(2‐hydroxy‐3‐methoxybenzylidene)amino]phenyl}ethanone) were prepared and characterized using FT‐IR, 1H‐ and 13C‐NMR, mass spectroscopy, TGA, elemental analysis, X‐ray powder diffraction and magnetic moment techniques. Octahedral geometry for new Ni(II) and Ru(II) complexes was proposed. Thermal decomposition confirmed the existence of lattice and coordinated water molecule in the complexes. To determine the antioxidant properties of Schiff base ligand and its Ni(II), Ru(II) metal complexes, FRAP, CUPRAC, ABTS and DPPH methods of antioxidant assays were used. Moreover, enzyme inhibition of complexes was evaluated against carbonic anhydrase I and II isoenzymes (CA I and CA II) and acetylcholinesterase (AChE). For CA I and CA II, the best inhibition enzymes, was the Ni(II) complex with 62.98±18.41, 86.17±23.62 Ki values, whereas this inhibition effect showed ligand with 24.53±2.66 Ki value for the AChE enzyme.  相似文献   
122.
The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.  相似文献   
123.
Biofilms in the environment can both cause detrimental and beneficial effects. However, their use in bioreactors provides many advantages including lesser tendencies to develop membrane fouling and lower required capital costs, their higher biomass density and operation stability, contribution to resistance of microorganisms, etc. Biofilm formation occurs naturally by the attachment of microbial cells to the support without use of any chemicals agent in biofilm reactors. Biofilm reactors have been studied and commercially used for waste water treatment and bench and pilot-scale production of value-added products in the past decades. It is important to understand the fundamentals of biofilm formation, physical and chemical properties of a biofilm matrix to run the biofilm reactor at optimum conditions. This review includes the principles of biofilm formation; properties of a biofilm matrix and their roles in the biofilm formation; factors that improve the biofilm formation, such as support materials; advantages and disadvantages of biofilm reactors; and industrial applications of biofilm reactors.  相似文献   
124.
OBJECTIVE: Selective serotonin-reuptake inhibitors (SSRIs) are used in the treatment of various forms of psychiatric disorders. Preclinical studies in laboratory animals have indicated that SSRIs were not genotoxic, but clear results from in vitro testing of SSRIs in a human cell system are currently scarce. The purpose of this study was to investigate whether SSRIs might be genotoxic. Sertraline was chosen as model SSRI, since it appears to be at least as well-tolerated as other SSRIs and may even have a more favourable side-effect profile. Unlike fluoxetine, fluvoxamine and paroxetine, sertraline has low potential for pharmacokinetic drug interactions. So, sertraline would be considered first in the treatment of psychiatric disorders requiring SSRI therapy in the future. We therefore examined peripheral lymphocytes from sertraline-treated patients for both sister chromatid exchanges (SCEs), cells with a high frequency of SCEs (HFC) and chromosome aberrations (CA) to evaluate the clastogenicity of SSRIs. METHOD: Ten sertraline-treated patients meeting 'Structured Clinical Interview for DSM-IV' criteria for both generalized anxiety disorder and major depression were compared with 18 healthy volunteers and 18 non-treated patients with similar psychopathology. Sertraline hydrochloride was administered orally at 50 mg daily for 10 months to 1 year. The participants were selected on the basis of similar responses to a questionnaire assessing risk of genotoxicity related to other aspects of life. All participants had very similar lifestyles, medical histories, biological and dietary factors. All subjects were non-smokers. RESULT: A statistically significant difference between patients with both generalized anxiety disorder and major depression (sertraline-treated or non-treated) and healthy volunteer groups was found by both SCE frequencies and HFC percentages. Both patient groups showed higher frequencies of SCEs than the healthy controls. No statistically significant difference was found between SCE frequencies or HFC percentages observed in sertraline-treated and non-treated patient groups. No statistical difference was found between groups with respect to the frequency of CA. CONCLUSION: There are no adequate studies analysing the clastogenicity of SSRIs, in particular of sertraline. The SCE frequency, the percentage HFC and the frequency of CA in patients with both generalized anxiety disorder and major depression exposed to daily doses of sertraline do not indicate a possible clastogenic hazard. The increased SCE frequencies in patients with both generalized anxiety disorder and major depression in our study-irrespective of sertraline treatment-indicate a possible genotoxic effect. However, our observations were based on a limited number of patients; the results may be explained by psychogenic stress.  相似文献   
125.
126.
Cakir B  Bozkurt A  Ercan F  Yeğen BC 《Peptides》2004,25(1):95-104
The present study was designed to compare the effect of leptin on acute colonic inflammation with that of acute stress exposure, which acts via the hypothalamic-pituitary-adrenal (HPA) axis. Sprague-Dawley rats of both sexes were administered intrarectally with acetic acid. Either leptin (10 microg/kg; i.p.) or saline was injected immediately before and 6 h after the induction of colitis. A group of rats was exposed to water avoidance stress (WAS) for 30 min at the 6th h of colitis induction. RU-486 (2 mg/kg; i.p.), a glucocorticoid receptor antagonist, was injected intraperitoneally, at 12 and 1 h before the initial leptin injection, and at 1 h before the second leptin injection or exposure to WAS. Rats were decapitated at 24 h and the distal 8 cm of the colon were removed for macroscopic and microscopic scoring, determination of tissue wet weight index (WI) and tissue myeloperoxidase activity (MPO). Acetic acid-induced colitis significantly increased macroscopic and microscopic damage scores, WI and MPO, compared to control group. Exposure to acute WAS or treatment with leptin reduced the elevations in damage scores, WI and MPO induced by colitis, but no additive inhibitory effect was observed when WAS and leptin were applied together. RU-486 treatment reversed the inhibitory effects of leptin or WAS on colonic inflammation. Our results demonstrate that exogenous leptin mimics the effects of HPA axis activation on colitis-induced inflammatory process. The results also suggest that the anti-inflammatory effect of leptin involves a tissue neutrophil-dependent mechanism and is dependent on the release of glucocorticoids.  相似文献   
127.
Ercan A  West CM 《Glycobiology》2005,15(5):489-500
Mucin-type O-glycosylation in Dictyostelium is initiated in the Golgi by a UDP-GlcNAc:polypeptide-Thr/Ser N-acetyl-alpha-glucosaminyltransferase (Dd-pp alphaGlcNAcT2) whose sequence is distantly related to the sequences of animal polypeptide-Thr/Ser N-acetyl-alpha-galactosaminyltransferases, such as murine Mm-pp alphaGalNAcT1. To evaluate the significance of this similarity, highly purified Dd-pp alphaGlcNAcT2 was assayed using synthetic peptides derived from known substrates. Dd-pp alphaGlcNAcT2 strongly prefers UDP-GlcNAc over UDP-GalNAc, preferentially modifies the central region of the peptide, and modifies Ser in addition to Thr residues. Initial velocity measurements performed over a matrix of UDP-GlcNAc donor and peptide acceptor concentrations indicate that the substrates bind to the enzyme in ordered fashion before the chemical conversion. Substrate inhibition exerted by a second peptide, and the pattern of product inhibition exerted by UDP, suggest that UDP-GlcNAc binds first and the peptide binds second, consistent with data reported for Mm-pp alphaGalNAcT1. Two selective competitive inhibitors of Mm-pp alphaGalNAcT1, retrieved from a screen of neutral-charge uridine derivatives, also inhibit Dd-pp alphaGlcNAcT1 competitively with only slightly less efficacy. Inhibition is specific for Dd-pp alphaGlcNAcT2 relative to two other Dictyostelium retaining glycosyltransferases. These data support a phylogenetic model in which the alphaGlcNAcT function in unicellular eukaryotes converted to an alphaGalNAcT function in the metazoan ortholog while conserving a similar reaction mechanism and active site architecture.  相似文献   
128.
129.
Recent advances for the production and recovery methods of lysozyme   总被引:1,自引:0,他引:1  
Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.  相似文献   
130.
Lignocellulosic materials that are the most abundant plant biomass in the world have the potential to become sustainable sources of the produced value added products. Tea processing waste (TPW) is a good lignocellulosic source to produce the value added products from fermentable sugars (FSs). Therefore, the present study is undertaken to produce FSs by using ultrasound‐assisted dilute acid (UADA) and dilute acid (DA) hydrolysis of TPW followed by enzymatic hydrolysis. UADA hydrolysis of TPW was optimized by response surface methodology (RSM) at maximum power (900 W) for 2 h. The optimum conditions were determined as 50°C, 1:6 (w/v) solid:liquid ratio, and 1% (w/v) DA concentration, which yielded 20.34 g/L FS concentration. Furthermore, its DA hydrolysis was also optimized by using RSM for comparison and the optimized conditions were found as 120°C, 1:8 solid:liquid ratio, and 1% acid concentration, which produced 25.3 g/L FS yield. Even though the produced sugars with UADA hydrolysis are slightly less, but it can provide significant cost saving due to the lower temperature requirement and less liquid consumption. Besides, enzymatic hydrolysis applied after pretreatments of TPW were very more economic than the conventional enzymatic hydrolysis in the literature due to shorter time requiring. In conclusion, ultrasound‐assisted is a promising technology that can be successfully applied for hydrolysis of biomass and can be an alternative to the other hydrolysis procedures and also TPW can be considered as suitable carbon source for the production of value‐added products like biofuels, organic acids, and polysaccharides. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:393–403, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号