首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   885篇
  免费   73篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   12篇
  2019年   16篇
  2018年   16篇
  2017年   9篇
  2016年   20篇
  2015年   36篇
  2014年   50篇
  2013年   63篇
  2012年   73篇
  2011年   85篇
  2010年   43篇
  2009年   39篇
  2008年   65篇
  2007年   56篇
  2006年   42篇
  2005年   44篇
  2004年   45篇
  2003年   40篇
  2002年   30篇
  2001年   12篇
  2000年   11篇
  1999年   6篇
  1998年   13篇
  1997年   10篇
  1996年   6篇
  1995年   4篇
  1994年   7篇
  1993年   3篇
  1992年   6篇
  1990年   12篇
  1989年   4篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1973年   2篇
  1971年   2篇
  1965年   2篇
  1963年   2篇
  1953年   1篇
排序方式: 共有958条查询结果,搜索用时 281 毫秒
141.
The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3′UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.  相似文献   
142.
The G3BP (ras‐GTPase‐Activating Protein SH3‐Domain‐Binding Protein) family of proteins has been implicated in both signal transduction and RNA‐metabolism. We have previously identified human G3BP‐1, G3BP‐2, and mouse G3BP‐2. Here, we report the cloning of mouse G3BP‐1, the discovery of two alternatively spliced isoforms of mouse, and human G3BP‐2 (G3BP‐2a and G3BP‐2b), and the chromosomal localisation of human G3BP‐1 and G3BP‐2, which map to 5q14.2‐5q33.3 and 4q12‐4q24 respectively. We mapped the rasGAP120 interactive region of the G3BP‐2 isoforms and show that both G3BP‐2a and G3BP‐2b use an N‐terminal NTF2‐like domain for rasGAP120 binding rather than several available proline‐rich (PxxP) motifs found in members of the G3BPs. Furthermore, we have characterized the protein expression of both G3BP‐1 and G3BP‐2a/b in adult mouse tissues, and show them to be both tissue and isoform specific. J. Cell. Biochem. 84: 173–187, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   
143.
144.
Physiological experiments conducted over the last 60 years indicate that the plant hormone auxin regulates a diverse set of developmental processes via changes in cell division, cell elongation and cell differentiation. Recent studies using transgenic plants with altered auxin levels support these conclusions and promise to provide more detailed information on the role of auxin during plant development. Although it is possible that all auxin responses are mediated by the same primary biochemical events, the studies described in this review are more consistent with multiple modes of auxin action. The development of molecular and genetic approaches to the study of hormone action should resolve this issue. The accelerated rate of progress in this field suggests that real insight into the mechanism of auxin action may be forthcoming.  相似文献   
145.
(5aR)-5a-C-pentyl-4-epi-isofagomine 1 is a powerful inhibitor of lysosomal β-galactosidase and a remarkable chaperone for mutations associated with GM1-gangliosidosis and Morquio disease type B. We report herein an improved synthesis of this compound and analogs (5a-C-methyl, pentyl, nonyl and phenylethyl derivatives), and a crystal structure of a synthetic intermediate that confirms its configuration resulting from the addition of a Grignard reagent. These compounds were evaluated as glycosidase inhibitors and their potential as chaperones for mutant lysosomal galactosidases determined. Based on these results and on docking studies, the 5-C-pentyl derivative 1 was selected as the optimal structure for further investigations: this compound induces the maturation of mutated β-galactosidase in fibroblasts of a GM1-gangliosidosis patient and promote the decrease of keratan sulfate and oligosaccharide load in patient cells. Compound 1 is clearly capable of restoring β-galactosidase activity and of promoting maturation of the protein, which should result in significant clinical benefit. These properties strongly support the development of compound 1 for the treatment of GM1-gangliosidosis and Morquio disease type B patients harboring β-galactosidase mutations sensitive to pharmacological chaperoning.  相似文献   
146.

Introduction

Although it is still at a very early stage compared to its mass spectrometry (MS) counterpart, proton nuclear magnetic resonance (NMR) lipidomics is worth being investigated as an original and complementary solution for lipidomics. Dedicated sample preparation protocols and adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its applicability.

Objectives

The study describes the development of a complete proton NMR lipidomics workflow for application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility with the high-throughput requirements of food quality characterization.

Method

The robustness of the developed sample preparation protocol is assessed in terms of repeatability and ability to provide informative fingerprints; further, different NMR acquisition schemes—including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes—are evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to characterize lipid profiles disruption in serum from β-agonists diet fed pigs.

Results

Our results show the ability of the workflow to discriminate efficiently sample groups based on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework.

Conclusion

This work demonstrates the potential of fast multidimensional 1H NMR—suited with an appropriate sample preparation—for lipidomics fingerprinting as well as its applicability to address chemical food safety issues.
  相似文献   
147.

Background

Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function.

Methods

Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR.

Results

THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression.

Conclusions and general significance

THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.  相似文献   
148.
The amiloride-sensitive epithelial Nachannel (ENaC) is a heteromultimeric channel made of three αβγ subunits. The structures involved in the ion permeation pathway have only been partially identified, and the respective contributions of each subunit in the formation of the conduction pore has not yet been established. Using a site-directed mutagenesis approach, we have identified in a short segment preceding the second membrane-spanning domain (the pre-M2 segment) amino acid residues involved in ion permeation and critical for channel block by amiloride. Cys substitutions of Gly residues in β and γ subunits at position βG525 and γG537 increased the apparent inhibitory constant (K i) for amiloride by >1,000-fold and decreased channel unitary current without affecting ion selectivity. The corresponding mutation S583 to C in the α subunit increased amiloride K i by 20-fold, without changing channel conducting properties. Coexpression of these mutated αβγ subunits resulted in a nonconducting channel expressed at the cell surface. Finally, these Cys substitutions increased channel affinity for block by externalZn2+ ions, in particular the αS583C mutant showing a K i for Zn2+of 29 μM. Mutations of residues αW582L or βG522D also increased amiloride K i, the later mutation generating a Ca2+blocking site located 15% within the membrane electric field. These experiments provide strong evidence that αβγ ENaCs are pore-forming subunits involved in ion permeation through the channel. The pre-M2 segment of αβγ subunits may form a pore loop structure at the extracellular face of the channel, where amiloride binds within the channel lumen. We propose that amiloride interacts with Na+ions at an external Na+binding site preventing ion permeation through the channel pore.  相似文献   
149.
Chimeric -glucuronidase (GUS) gene expression in an efficientAgrobacterium-mediated transformation system utilising mesophyll cells ofPetunia hybrida synchronized with cell cycle phase-specific inhibitors (mimosine and colchicine) was used to show the absolute requirement of S-phase for transfer and/or integration of the transferred DNA (T-DNA). Flow-cytometric analysis of nuclear DNA content and immunohistological detection of bromodeoxyuridine (BrdUrd) incorporation showed that, prior to phytohormone treatment, most (98%) mesophyll cells were at GO-Gl-phase (quiescent phase) and no cell division was occurring. After 48 h and 72 h of phytohormone treatment, there was a rapid increase in S-G2-M-phase populations (> 75%) and a concomitant decrease (down to 24%) in G0–-G1-phase cells. Assays of GUS showed that maximum transformation (> 95% of explants) also occurred after this period. Our data showed that mimosine and colchicine blocked the mesophyll cells at late Gl-phase and M-phase, respectively. No transformation (= GUS expression) was observed in phytohormone-treated cells inhibited in late G1 by mimosine. However, after removal of mimosine, 82% of the explants were transformed, indicating the non-toxic and reversible effect of the inhibitor. On the other hand, a relatively high transformation frequency (65% of explants) was observed after blocking the cell cycle at M-phase with colchicine. However, only transient, but no stable, gene expression (= kanamycin-resistant callus formation) was observed in colchicine-treated M-phase-arrested cells. Similarly, endoreduplication of nuclear DNA, which occurred during the 48 h of phytohormone treatment in some mesophyll cells and cells located along the minor veins in the leaf explants, resulted in transient GUS expression only. These observations indicate a direct correlation between endoreduplication and transient GUS gene expression. Obviously, for stable GUS gene expression, cell division and proliferation are required, indicating that both DNA duplication (S-phase) and cell division (M-phase) are strongly related to stable transformation. We propose that the present system should facilitate further dissection of the process of T-DNA integration in the host genome and therefore should aid in developing new strategies for transformation of recalcitrant plants.Abbreviations BAP 6-benzylaminopurine - BM basal medium - BrdUrd bromodeoxyuridine - GUS -glucuronidase - KmR kanamycin resistant - T-DNA transferred DNA  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号