首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Introduction

Metabolite identification in biological samples using Nuclear Magnetic Resonance (NMR) spectra is a challenging task due to the complexity of the biological matrices.

Objectives

This paper introduces a new, automated computational scheme for the identification of metabolites in 1D 1H NMR spectra based on the Human Metabolome Database.

Methods

The methodological scheme comprises of the sequential application of preprocessing, data reduction, metabolite screening and combination selection.

Results

The proposed scheme has been tested on the 1D 1H NMR spectra of: (a) an amino acid mixture, (b) a serum sample spiked with the amino acid mixture, (c) 20 blood serum, (d) 20 human amniotic fluid samples, (e) 160 serum samples from publicly available database. The methodological scheme was compared against widely used software tools, exhibiting good performance in terms of correct assignment of the metabolites.

Conclusions

This new robust scheme accomplishes to automatically identify peak resonances in 1H-NMR spectra with high accuracy and less human intervention with a wide range of applications in metabolic profiling.
  相似文献   

2.

Introduction

Anticancer treatment results in temporary or permanent toxicity considered as changes in normal tissues and/or involved regions. The net effect is mirrored in morphological, functional and molecular disturbances—thus in a systemic response of the human body. To date, specific NMR biomarkers of radiation therapy toxicity in head and neck squamous cell carcinoma (HNSCC) patients are scarce or even missing.

Objectives

We aimed to investigate molecular processes reflecting acute radiation sequelae (ARS) in HNSCC patients using NMR-based metabolomics of blood serum.

Methods

45 patients with HNSCC were treated with radiotherapy (RT) or chemoradiotherapy (CHRT). Blood samples were collected within a week after RT/CHRT completion. Patients were divided into two classes (of high and low ARS) on the basis of the highest individual ARS value observed during the treatment. 1H NMR spectra of serum samples were acquired on a Bruker 400.13 MHz spectrometer at 310 K and analyzed using principal component analysis and orthogonal partial least squares discriminant analysis. Additional statistical analyses were performed on quantified metabolites.

Results

1D projections of the J-resolved NMR spectra seem to be of the great potential in the quest for the HNSCC treatment toxicity biomarker. The metabolic features characteristic for high ARS are the increased signals of N-acetyl-glycoprotein and acetate, as well as decrease of choline and the metabolites involved in energy metabolism: branched chain amino acids (BCAAs), alanine, creatinine and carnitine. Furthermore, we observed significant correlations between N-acetyl-glycoprotein and clinical markers of inflammation as well as acetate and a percentage-weight-loss during the treatment. CRP was also negatively correlated with alanine and BCAAs.

Conclusion

NMR-based metabolomics provides relevant biomarkers of RT/CHRT toxicity (ARS) in HNSCC patients. The results indicate at least three concomitant processes related to high ARS: inflammation, altered energy metabolism and disturbed membrane metabolism, and indicate an exciting potential of J-resolved NMR spectroscopy combined with multivariate projection techniques.
  相似文献   

3.

Introduction

Untargeted metabolomics workflows include numerous points where variance and systematic errors can be introduced. Due to the diversity of the lipidome, manual peak picking and quantitation using molecule specific internal standards is unrealistic, and therefore quality peak picking algorithms and further feature processing and normalization algorithms are important. Subsequent normalization, data filtering, statistical analysis, and biological interpretation are simplified when quality data acquisition and feature processing are employed.

Objectives

Metrics for QC are important throughout the workflow. The robust workflow presented here provides techniques to ensure that QC checks are implemented throughout sample preparation, data acquisition, pre-processing, and analysis.

Methods

The untargeted lipidomics workflow includes sample standardization prior to acquisition, blocks of QC standards and blanks run at systematic intervals between randomized blocks of experimental data, blank feature filtering (BFF) to remove features not originating from the sample, and QC analysis of data acquisition and processing.

Results

The workflow was successfully applied to mouse liver samples, which were investigated to discern lipidomic changes throughout the development of nonalcoholic fatty liver disease (NAFLD). The workflow, including a novel filtering method, BFF, allows improved confidence in results and conclusions for lipidomic applications.

Conclusion

Using a mouse model developed for the study of the transition of NAFLD from an early stage known as simple steatosis, to the later stage, nonalcoholic steatohepatitis, in combination with our novel workflow, we have identified phosphatidylcholines, phosphatidylethanolamines, and triacylglycerols that may contribute to disease onset and/or progression.
  相似文献   

4.

Introduction

Differences in the metabolite profiles between serum and plasma are incompletely understood.

Objectives

To evaluate metabolic profile differences between serum and plasma and among plasma sample subtypes.

Methods

We analyzed serum, platelet rich plasma (PRP), platelet poor plasma (PPP), and platelet free plasma (PFP), collected from 8 non-fasting apparently healthy women, using untargeted standard 1D and CPMG 1H NMR and reverse phase and hydrophilic (HILIC) UPLC-MS. Differences between metabolic profiles were evaluated using validated principal component and orthogonal partial least squares discriminant analysis.

Results

Explorative analysis showed the main source of variation among samples was due to inter-individual differences with no grouping by sample type. After correcting for inter-individual differences, lipoproteins, lipids in VLDL/LDL, lactate, glutamine, and glucose were found to discriminate serum from plasma in NMR analyses. In UPLC-MS analyses, lysophosphatidylethanolamine (lysoPE)(18:0) and lysophosphatidic acid(20:0) were higher in serum, and phosphatidylcholines (PC)(16:1/18:2, 20:3/18:0, O-20:0/22:4), lysoPC(16:0), PE(O-18:2/20:4), sphingomyelin(18:0/22:0), and linoleic acid were lower. In plasma subtype analyses, isoleucine, leucine, valine, phenylalanine, glutamate, and pyruvate were higher among PRP samples compared with PPP and PFP by NMR while lipids in VLDL/LDL, citrate, and glutamine were lower. By UPLC-MS, PE(18:0/18:2) and PC(P-16:0/20:4) were higher in PRP compared with PFP samples.

Conclusions

Correction for inter-individual variation was required to detect metabolite differences between serum and plasma. Our results suggest the potential importance of inter-individual effects and sample type on the results from serum and plasma metabolic phenotyping studies.
  相似文献   

5.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

6.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

7.

Introduction

Experiments in metabolomics rely on the identification and quantification of metabolites in complex biological mixtures. This remains one of the major challenges in NMR/mass spectrometry analysis of metabolic profiles. These features are mandatory to make metabolomics asserting a general approach to test a priori formulated hypotheses on the basis of exhaustive metabolome characterization rather than an exploratory tool dealing with unknown metabolic features.

Objectives

In this article we propose a method, named ASICS, based on a strong statistical theory that handles automatically the metabolites identification and quantification in proton NMR spectra.

Methods

A statistical linear model is built to explain a complex spectrum using a library containing pure metabolite spectra. This model can handle local or global chemical shift variations due to experimental conditions using a warping function. A statistical lasso-type estimator identifies and quantifies the metabolites in the complex spectrum. This estimator shows good statistical properties and handles peak overlapping issues.

Results

The performances of the method were investigated on known mixtures (such as synthetic urine) and on plasma datasets from duck and human. Results show noteworthy performances, outperforming current existing methods.

Conclusion

ASICS is a completely automated procedure to identify and quantify metabolites in 1H NMR spectra of biological mixtures. It will enable empowering NMR-based metabolomics by quickly and accurately helping experts to obtain metabolic profiles.
  相似文献   

8.

Introduction

Fish feed formulations are constantly evolving to improve the quality of diets for farmed fish and to ensure the sustainability of the aquaculture sector. Nowadays, insect, microalgae and yeast are feedstuff candidates for new feeds. However, the characterization of aquafeed is still based on proximate and targeted analyses which may not be sufficient to assess feed quality.

Objectives

Our aim was to highlight the soluble compounds that specifically differ between selected plant-based feeds complemented with alternative feedstuffs and discuss their origin and potential for fish nutrition.

Methods

A growth trial was carried out to evaluate growth performances and feed conversion ratios of fish fed plant-based, commercial, insect, spirulina and yeast feeds. 1H NMR metabolomics profiling of each feed was performed using a CPMG sequence on polar extracts. Spectra were processed, and data were analyzed using multivariate and univariate analyses to compare alternative feeds to a plant-based feed.

Results

Fish fed insect or yeast feed showed the best growth performances associated with the lowest feed conversion ratios compared to plant-based feed. Soluble compound 1H NMR profiles of insect and spirulina alternative feeds differed significantly from the plant-based one that clustered with yeast feed. In insect and spirulina feeds, specific differences compared to plant-based feed concerned glycerol and 3-hydroxybutyrate, respectively.

Conclusion

This strategy based on compositional differences between plant-based and alternative feeds can be useful for detecting compounds unsuspected until now that could impact fish metabolism.
  相似文献   

9.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

10.

Introduction

Periodontitis is a chronic, non-reversible inflammatory disease of the oral cavity leading to destruction of periodontal tissues. Thus, the estimation of bacterial metabolite, tissue damage and secretory metabolites of the triggered inflammatory cells likely to yield results. It may be of value for understanding the pathophysiology of the disease by metabolic profiling of saliva samples using high-resolution NMR spectroscopy.

Objective

The study will evaluate the difference in salivary metabolites in healthy and periodontal condition along with fetching of possible biomarkers in case of chronic periodontitis.

Methods

1H- NMR spectroscopy has been employed in 114 saliva samples in search of distinctive differences and spectral data were further subjected to multivariate analysis.

Result

One-hundred metabolites were characterised and assigned in the 1H NMR spectra of saliva. The statistical analysis of control (Healthy subjects) and diseased (Periodontal subjects) using PLS-DA model resulted in R2 of 0.84 and Q2 of 0.79. There was an elevation in the concentration of statistically discriminant metabolites. The twenty newly identified metabolites in saliva indicates bacterial population shift along with change in homeostasis. These disturbs the biofilm, a real protector against any possible bio-damage on tooth surface. These newly identified metabolites could define better geographically diversified periodontal condition.

Conclusion

Analysis clearly differentiates healthy subjects from the diseased ones. Few newly identified metabolites along with the pool of metabolites may serve as biomarkers for distinguishing the severity and complexity of periodontitis.
  相似文献   

11.

Introduction

The analysis of limited-quantity samples remains a challenge associated with mouse models, especially for multi-platform metabolomics studies. Although inherently insensitive, the highly specific characteristics of nuclear magnetic resonance (NMR) spectroscopy make it an advantageous platform for global metabolite profiling, particularly in mitochondrial disease research.

Objectives

Show method equivalency between a well-established standard operating protocol (SOP) and our novel miniaturized 1H-NMR method.

Method

The miniaturized method was performed in a 2 mm NMR tube on a standard 500 MHz NMR spectrometer with a 5 mm triple-resonance inverse TXI probe at room temperature.

Results

Firstly, using synthetic urine spiked with low (50 µM), medium (250 µM) and high (500 µM) levels (n?=?10) of nine standards, both the SOP and miniaturized method were shown to have acceptable precision (CV?<?15%), relative accuracy (80–120%), and linearity (R2?>?0.95), except for taurine. Furthermore, statistical equivalence was shown using the two one-sided test. Secondly, pooled mouse quadriceps muscle extract was used to further confirm method equivalence (n?=?3), as well as explore the analytical dynamics of this novel approach by analyzing more-concentrated versions of samples (up to 10× concentration) to expand identification of metabolites qualitatively, with quantitative linearity. Lastly, we demonstrate the new technique’s application in a pilot metabolomics study using minute soleus muscle tissue from a mouse model of Leigh syndrome using Ndufs4 KO mice.

Conclusion

We demonstrate method equivalency, supporting our novel miniaturized 1H-NMR method as a financially feasible alternative to cryoprobe technology—for limited-quantity biological samples in metabolomics studies that requires a volume one-tenth of the SOP.
  相似文献   

12.

Introduction

The pharmacological activities of medicinal plants are reported to be due to a wide range of metabolites, therein, the concentrations of which are greatly affected by many genetic and/or environmental factors. In this context, a metabolomics approach has been applied to reveal these relationships. The investigation of such complex networks that involve the correlation between multiple biotic and abiotic factors and the metabolome, requires the input of information acquired by more than one analytical platform. Thus, development of new metabolomics techniques or hyphenations is continuously needed.

Objectives

Feasibility of high performance thin-layer chromatography (HPTLC) were investigated as a supplementary tool for medicinal plants metabolomics supporting 1H nuclear magnetic resonance (1H NMR) spectroscopy.

Method

The overall metabolic difference of plant material collected from two species (Rheum palmatum and Rheum tanguticum) in different geographical locations and altitudes were analyzed by 1H NMR- and HPTLC-based metabolic profiling. Both NMR and HPTLC data were submitted to multivariate data analysis including principal component analysis and orthogonal partial least square analysis.

Results

The NMR and HPTLC profiles showed that while chemical variations of rhubarb are in some degree affected by all the factors tested in this study, the most influential factor was altitude of growth. The metabolites responsible for altitude differentiation were chrysophanol, emodin and sennoside A, whereas aloe emodin, catechin, and rhein were the key species-specific markers.

Conclusion

These results demonstrated the potential of HTPLC as a supporting tool for metabolomics due to its high profiling capacity of targeted metabolic groups and preparative capability.
  相似文献   

13.

Introduction

Despite the use of buffering agents the 1H NMR spectra of biofluid samples in metabolic profiling investigations typically suffer from extensive peak frequency shifting between spectra. These chemical shift changes are mainly due to differences in pH and divalent metal ion concentrations between the samples. This frequency shifting results in a correspondence problem: it can be hard to register the same peak as belonging to the same molecule across multiple samples. The problem is especially acute for urine, which can have a wide range of ionic concentrations between different samples.

Objectives

To investigate the acid, base and metal ion dependent 1H NMR chemical shift variations and limits of the main metabolites in a complex biological mixture.

Methods

Urine samples from five different individuals were collected and pooled, and pre-treated with Chelex-100 ion exchange resin. Urine samples were either treated with either HCl or NaOH, or were supplemented with various concentrations of CaCl2, MgCl2, NaCl or KCl, and their 1H NMR spectra were acquired.

Results

Nonlinear fitting was used to derive acid dissociation constants and acid and base chemical shift limits for peaks from 33 identified metabolites. Peak pH titration curves for a further 65 unidentified peaks were also obtained for future reference. Furthermore, the peak variations induced by the main metal ions present in urine, Na+, K+, Ca2+ and Mg2+, were also measured.

Conclusion

These data will be a valuable resource for 1H NMR metabolite profiling experiments and for the development of automated metabolite alignment and identification algorithms for 1H NMR spectra.
  相似文献   

14.

Introduction

Adoption of automatic profiling tools for 1H-NMR-based metabolomic studies still lags behind other approaches in the absence of the flexibility and interactivity necessary to adapt to the properties of study data sets of complex matrices.

Objectives

To provide an open source tool that fully integrates these needs and enables the reproducibility of the profiling process.

Methods

rDolphin incorporates novel techniques to optimize exploratory analysis, metabolite identification, and validation of profiling output quality.

Results

The information and quality achieved in two public datasets of complex matrices are maximized.

Conclusion

rDolphin is an open-source R package (http://github.com/danielcanueto/rDolphin) able to provide the best balance between accuracy, reproducibility and ease of use.
  相似文献   

15.

Introduction

Gastric cancer (GC) is a malignant tumor worldwide. As primary pathway for metastasis, the lymphatic system is an important prognostic factor for GC patients. Although the metabolic changes of gastric cancer have been investigated in extensive studies, little effort focused on the metabolic profiling of lymph node metastasis (LNM)-positive or negative GC patients.

Objectives

We performed 1H NMR spectrum of GC tissue samples with and without LNM to identify novel potential metabolic biomarkers in the process of LNM of GC.

Methods

1H NMR-based untargeted metabolomics approach combined with multivariate statistical analyses were used to study the metabolic profiling of tissue samples from LNM-positive GC patients (n?=?40), LNM-negative GC patients (n?=?40) and normal controls (n?=?40).

Results

There was a clear separation between GC patients and normal controls, and 33 differential metabolites were identified in the study. Moreover, GC patients were also well-classified according to LNM-positive or negative. Totally eight distinguishing metabolites were selected in the metabolic profiling of GC patients with LNM-positive or negative, suggesting the metabolic dysfunction in the process of LNM. According to further validation and analysis, especially BCAAs metabolism (leucine, isoleucine, valine), GSH and betaine may be as potential factors of diagnose and prognosis of GC patients with or without LNM.

Conclusion

To our knowledge, this is the first metabolomics study focusing on LNM of GC. The identified distinguishing metabolites showed a promising application on clinical diagnose and therapy prediction, and understanding the mechanism underlying the carcinogenesis, invasion and metastasis of GC.
  相似文献   

16.

Introduction

Meningitis, a morbidly infectious central nervous system pathology is accompanied by acute inflammation of the meninges, causing raised intracranial pressure linked with serious neurological sequelae.

Objective

To observe the variation in the metabolic profile, that may occur in serum and urine along with CSF in adults using 1H NMR spectroscopy, with an attempt of appropriate and timely treatment regimen.

Methods

The 1H NMR-based metabolomics has been performed in 115 adult subjects for differentiating bacterial meningitis (BM) and tubercular meningitis (TBM).

Results

The discriminant function analysis (DFA) of the three bio-fluids collectively identified 3-hydroxyisovalerate, lactate, glucose, formate, valine, alanine, ketonic bodies, malonate and choline containing compounds (choline and GPC) as significant metabolites among cases versus control group. The differentiation of bacterial meningitis and tuberculous meningitis (BM vs. TBM) can be done on the basis of identification of 3-hydroxyisovalerate, isobutyrate and formate in case of CSF (with a correct classification of 78 %), alanine in serum (correct classification 60 %), valine and acetone in case of urine (correct classification 89.1 %). The NMR spectral bins based orthogonal signal correction principal component analysis score plots of significant metabolites obtained from DFA also provided group classification among cases versus control group in CSF, serum and urine samples. The variable importance in projection scores also identified similar significant metabolites as obtained from DFA, collectively in CSF, serum and urine samples, responsible for differentiation of meningitis.

Conclusion

The CSF contained metabolites which are formed during infection and inflammation, and these were also found in significant quantity in serum and urine samples.
  相似文献   

17.

Introduction

Breast cancer is the most frequent diagnosed cancer among women with a mortality rate of 15% of all cancer related deaths in women. Breast cancer is heterogeneous in nature and produces plethora of metabolites allowing its early detection using molecular diagnostic techniques like magnetic resonance spectroscopy.

Objectives

To evaluate the variation in metabolic profile of breast cancer focusing on lipids as triglycerides (TG) and free fatty acids (FFA) that may alter in malignant breast tissues and lymph nodes from adjacent benign breast tissues by HRMAS 1H NMR spectroscopy.

Methods

The 1H NMR spectra recorded on 173 tissue specimens comprising of breast tumor tissues, adjacent tissues, few lymph nodes and overlying skin tissues obtained from 67 patients suffering from breast cancer. Multivariate statistical analysis was employed to identify metabolites acting as major confounders for differentiation of malignancy.

Result

Reduction in lipid content were observed in malignant breast tissues along with a higher fraction of FFA. Four small molecule metabolites e.g., choline containing compounds (Chocc), taurine, glycine, and glutamate were also identified as major confounders. The test set for prediction provided sensitivity and specificity of more than 90% excluding the lymph nodes and skin tissues.

Conclusion

Fatty acids composition in breast cancer using in vivo magnetic resonance spectroscopy (MRS) is gaining its importance in clinical settings (Coum et al. in Magn Reson Mater Phys Biol Med 29:1–4, 2016). The present study may help in future for precise evaluation of lipid classification including small molecules as a source of early diagnosis of invasive ductal carcinoma by employing in vivo magnetic resonance spectroscopic methods.
  相似文献   

18.

Introduction

The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels.

Objectives

To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS 1H NMR spectroscopy.

Methods

Using non-destructive HR-MAS 1H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6).

Results

Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies.

Conclusions

The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo 1H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.
  相似文献   

19.

Introduction

Rising seawater temperatures are threatening the persistence of coral reefs; where above critical thresholds, thermal stress results in a breakdown of the coral-dinoflagellate symbiosis and the loss of algal symbionts (coral bleaching). As symbiont-derived organic products typically form a major portion of host energy budgets, this has major implications for the fitness and persistence of symbiotic corals.

Objectives

We aimed to determine change in autotrophic carbon fate within individual compounds and downstream metabolic pathways in a coral symbiosis exposed to varying degrees of thermal stress and bleaching.

Methods

We applied gas chromatography–mass spectrometry coupled to a stable isotope tracer (13C), to track change in autotrophic carbon fate, in symbiont and host individually, following exposure to elevated water temperature.

Results

Thermal stress resulted in partner-specific changes in carbon fate, which progressed with heat stress duration. We detected modifications to carbohydrate and fatty acid metabolism, lipogenesis, and homeostatic responses to thermal, oxidative and osmotic stress. Despite pronounced photodamage, remaining in hospite symbionts continued to produce organic products de novo and translocate to the coral host. However as bleaching progressed, we observed minimal 13C enrichment of symbiont long-chain fatty acids, also reflected in 13C enrichment of host fatty acid pools.

Conclusion

These data have major implications for our understanding of coral symbiosis function during bleaching. Our findings suggest that during early stage bleaching, remaining symbionts continue to effectively translocate a variety of organic products to the host, however under prolonged thermal stress there is likely a reduction in the quality of these products.
  相似文献   

20.

Introduction

Onion (Allium cepa) represents one of the most important horticultural crops and is used as food, spice and medicinal plant almost worldwide. Onion bulbs accumulate a broad range of primary and secondary metabolites which impact nutritional, sensory and technological properties.

Objectives

To complement existing analytical methods targeting individual compound classes this work aimed at the development and validation of an analytical workflow for comprehensive metabolite profiling of onion bulbs.

Method

Metabolite profiling was performed by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (LC/ESI-QTOFMS). For annotation of metabolites accurate mass tandem mass spectrometry experiments were carried out.

Results

On the basis of LC/ESI-QTOFMS and two chromatographic methods an analytical workflow was developed which facilitates profiling of polar and semi-polar onion metabolites including fructooligosaccharides, proteinogenic amino acids, peptides, S-substituted cysteine conjugates, flavonoids and saponins. To minimize enzymatic conversion of S-alk(en)ylcysteine sulfoxides, a sample preparation and extraction protocol for fresh onions was developed comprising cryohomogenization and a low-temperature quenching step. A total of 123 metabolites were annotated and characterized by chromatographic and tandem mass spectral data. For validation, recovery rates and matrix effects were determined for 15 model compounds. Repeatability and linearity were assessed for more than 80 endogenous metabolites.

Conclusion

As exemplarily demonstrated by comparative metabolic analysis of six onion cultivars the established analytical workflow in combination with targeted and non-targeted data analysis strategies can be successfully applied for comprehensive metabolite profiling of onion bulbs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号