首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3623篇
  免费   355篇
  2024年   6篇
  2023年   31篇
  2022年   32篇
  2021年   168篇
  2020年   65篇
  2019年   109篇
  2018年   117篇
  2017年   96篇
  2016年   188篇
  2015年   250篇
  2014年   242篇
  2013年   263篇
  2012年   370篇
  2011年   308篇
  2010年   180篇
  2009年   159篇
  2008年   214篇
  2007年   208篇
  2006年   177篇
  2005年   162篇
  2004年   171篇
  2003年   116篇
  2002年   134篇
  2001年   14篇
  2000年   18篇
  1999年   16篇
  1998年   28篇
  1997年   16篇
  1996年   14篇
  1995年   8篇
  1994年   16篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1989年   3篇
  1988年   2篇
  1986年   3篇
  1985年   7篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1974年   4篇
  1970年   3篇
  1967年   2篇
  1902年   1篇
  1900年   2篇
  1899年   1篇
排序方式: 共有3978条查询结果,搜索用时 19 毫秒
991.
Galectin-3, a β-galactoside binding, endogenous lectin,takes part in various inflammatory events and is produced insubstantial amounts at inflammatory foci. We investigated whetherextracellular galectin-3 could participate in the phagocyticclearance of apoptotic neutrophils by macrophages, a processof crucial importance for termination of acute inflammation.Using human leukocytes, we show that exogenously added galectin-3increased the uptake of apoptotic neutrophils by monocyte-derivedmacrophages (MDM). Both the proportion of MDM that engulfedapoptotic prey and the number of apoptotic neutrophils thateach MDM engulfed were enhanced in the presence of galectin-3.The effect was lactose-inhibitable and required galectin-3 affinityfor N-acetyllactosamine, a saccharide typically found on cellsurface glycoproteins, since a mutant lacking this activitywas without effect. The enhanced uptake relied on the presenceof galectin-3 during the cellular interaction and was paralleledby lectin binding to apoptotic cells as well as MDM in a lactose-dependentmanner. These findings suggest that galectin-3 functions asa bridging molecule between phagocyte and apoptotic prey, actingas an opsonin. The process of clearance, whereby apoptotic neutrophilsare removed by macrophages, is crucial for the resolution ofacute inflammation and our data imply that the increased levelsof galectin-3 often found at inflammatory sites could potentlyaffect this process.  相似文献   
992.
Dose‐intensive chemotherapy results in an obligatory period of severe neutropenia during which patients are at high risk of infection. While patient support with donor neutrophils is possible, this option is restricted due to donor availability and logistic complications. To overcome these problems, we explored the possibility of large scale ex vivo manufacture of neutrophils from hematopoietic progenitor cells (HPC). CD34+ HPC isolated from umbilical cord blood (UCB) and mobilized peripheral blood (mPB) were expanded in serum‐free medium supplemented with stem cell factor, granulocyte colony stimulating factor, and a thrombopoietin peptide mimetic. After 15 days of cultivation a 5,800‐fold expansion in cell number was achieved for UCB, and up to 4,000‐fold for mPB, comprising 40% and 60% mature neutrophils respectively. Ex vivo expanded neutrophils exhibited respiratory burst activity similar to that for donor neutrophils, and were capable of killing Candida albicans in vitro. These yields correspond to a more than 10‐fold improvement over current methods, and are sufficient for the production of multiple neutrophil transfusion doses per HPC donation. To enable clinical scale manufacture, we adapted our protocol for use in a wave‐type bioreactor at a volume of 10 L. This is the first demonstration of a large scale bioprocess suitable for routine manufacture of a mature blood cell product from HPC, and could enable prophylactic neutrophil support for chemotherapy patients. Biotechnol. Bioeng. 2009; 104: 832–840 © 2009 Wiley Periodicals, Inc.  相似文献   
993.
Sperm from the toad Bufo arenarum must penetrate the egg jelly before reaching the vitelline envelope (VE), where the acrosome reaction is triggered. When the jelly coat is removed, sperm still bind to the VE, but acrosomal exocytosis is not promoted. Our previous work demonstrated that diffusible substances of the jelly coat, termed "egg water" (EW), triggered capacitation-like changes in B. arenarum sperm, promoting the acquisition of a transient fertilizing capacity. In the present work, we correlated this fertilizing capacity with the ability of the sperm to undergo the acrosome reaction, further substantiating the role of the jelly coat in fertilization. When sperm were exposed to the VE, only those preincubated in EW for 5 or 8 min underwent an increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)), which led to acrosomal exocytosis. Responsiveness to the VE was not acquired on preincubation in EW for 2 or 15 min or in Ringer solution regardless of the preincubation time. In contrast, depletion of intracellular Ca(2+) stores (induced by thapsigargin) promoted [Ca(2+)](i) rise and the acrosome reaction even in sperm that were not exposed to EW. Acrosomal exocytosis was blocked by the presence of Ca(2+) chelators independent of whether a physiological or pharmacological stimulus was used. However, Ni(2+) and mibefradil prevented [Ca(2+)](i) rise and the acrosome reaction of sperm exposed to the VE but not of sperm exposed to thapsigargin. These data suggest that the acrosomal responsiveness of B. arenarum sperm, present during a narrow period, is acquired during EW incubation and involves the modulation of a voltage-dependent Ca(2+) channel.  相似文献   
994.
995.
996.
Antibodies are modular proteins consisting of domains that exhibit a β-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain VL is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a VL domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The VL domain from MAK33 (murine monoclonal antibody of the subtype κ/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this VL domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the VL domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.  相似文献   
997.
Cattle with high feed efficiencies (designated “efficient”) produce less methane gas than those with low feed efficiencies (designated “inefficient”); however, the role of the methane producers in such difference is unknown. This study investigated whether the structures and populations of methanogens in the rumen were associated with differences in cattle feed efficiencies by using culture-independent methods. Two 16S rRNA libraries were constructed using ∼800-bp amplicons generated from pooled total DNA isolated from efficient (n = 29) and inefficient (n = 29) animals. Sequence analysis of up to 490 randomly selected clones from each library showed that the methanogenic composition was variable: less species variation (22 operational taxonomic units [OTUs]) was detected in the rumens of efficient animals, compared to 27 OTUs in inefficient animals. The methanogenic communities in inefficient animals were more diverse than those in efficient ones, as revealed by the diversity indices of 0.84 and 0.42, respectively. Differences at the strain and genotype levels were also observed and found to be associated with feed efficiency in the host. No difference was detected in the total population of methanogens, but the prevalences of Methanosphaera stadtmanae and Methanobrevibacter sp. strain AbM4 were 1.92 (P < 0.05) and 2.26 (P < 0.05) times higher in inefficient animals, while Methanobrevibacter sp. strain AbM4 was reported for the first time to occur in the bovine rumen. Our data indicate that the methanogenic ecology at the species, strain, and/or genotype level in the rumen may play important roles in contributing to the difference in methane gas production between cattle with different feed efficiencies.Microbial fermentation and ruminal nutrient absorption are key steps in the energy metabolism of cattle. The microbiota in the rumen is highly associated with the diet, age, antibiotic use, and health of host animals (32). Different types of symbiotic anaerobic microorganisms, including bacteria, archaea, ciliated protozoa, and fungi, inhabit the rumen (15), interact with each other, and play important roles in affecting the host''s performance. The microbial-host relationships are highly complex and varied, ranging from mutually beneficial cooperation to competition (10). Among ruminal microbes, bacteria decompose the feed into short-chain (C1 to C5) fatty acids, amino acids, H2, and CO2, etc. (20). To maintain the low hydrogen level in this habitat, hydrogen-utilizing microbes, such as methanogens, utilize H2 and carbon substrates, mainly CO2, acetate, or methanol, to generate methane gas and hence to reduce hydrogen pressure in the rumen (8). However, this process causes a significant (6%) loss of dietary energy in the form of methane emission (14), which contributes to 13 to 19% of global greenhouse gas (16), and is one of the significant agricultural “causative sectors” contributing to global warming (13). Therefore, the energy loss and the consequent methane emission arouse both nutritional and environmental concerns in the livestock industry.Archaeal methanogens are obligate anaerobes (38), and species of the order Methanobacteriales are the most common methanogens found in the rumen (11). Recent studies using culture-independent methods investigating the methanogenic communities in the rumens of sheep and cattle have identified 21 different strains belonging to 13 species in sheep (40, 41, 43, 44) and 13 different strains related to 8 species in cattle (23, 37, 42). In addition, the identification of novel uncultured methanogens in the rumen (23, 33, 40) suggests that the understanding of the methanogenic ecology is limited. Cattle with higher feed efficiencies are reported to produce 20 to 30% less methane (9, 24). However, the linkage between rumen methanogenic composition and the host''s feed efficiency and methane production has not been studied and reported.As one of the indicators of feed efficiency in cattle, residual feed intake (RFI) measures the difference between an animal''s actual feed intake and the expected feed requirements for growth (1, 2). Cattle with low RFI (L-RFI) are designated “efficient,” while animals with high RFI (H-RFI) are designated “inefficient.” A recent study reporting a correlation between bacterial profiles and cattle RFI has suggested the probable linkage between rumen microbial ecology and feed efficiency in cattle (7). Therefore, we hypothesized that the structures and populations of methanogens may be also associated with RFI and methane gas production by the host. In this study, the compositions of methanogens in the rumens of cattle with different RFIs were compared by sequence analysis of the partial 16S rRNA genes (∼800 bp) generated from two constructed libraries, using pooled DNA from efficient (L-RFI) and inefficient (H-RFI) animals. The population of selected species in each steer was evaluated using quantitative real-time PCR (qRT-PCR) analysis, and the correlation between methanogenic structure/population and cattle RFI was investigated.  相似文献   
998.
999.
1000.
Interleukin-1β (IL-1β) is an important pro-inflammatory cytokine that is secreted by unconventional means in a caspase-1-dependent manner. Using a one-step immunoprecipitation approach to isolate endogenous caspase-1 from the monocytic THP1 cell line, we identified previously undescribed binding partners using mass spectrometry. One of the proteins identified was Rab39a, a member of the Rab GTPase family, a group of proteins that have important roles in protein trafficking and secretion. We confirmed by co-immunoprecipitation that Rab39a binds caspase-1. Knock down of Rab39a with small interfering RNA resulted in diminished levels of secreted IL-1β but had no effect on induction of pro-IL-1β mRNA by lipopolysaccharide. Rab39a contains a highly conserved caspase-1 cleavage site and was cleaved in the presence of recombinant caspase-1 or lipopolysaccharide. Finally, overexpression of Rab39a results in an increase in IL-1β secretion, and furthermore, overexpression of a Rab39a construct lacking the caspase-1 cleavage site leads to an additional increase in IL-1β secretion. Altogether, our findings show that Rab39a interacts with caspase-1 and suggest that Rab39a functions as a trafficking adaptor linking caspase-1 to IL-1β secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号