首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   660篇
  免费   67篇
  2021年   10篇
  2020年   6篇
  2019年   8篇
  2018年   5篇
  2017年   10篇
  2016年   14篇
  2015年   36篇
  2014年   31篇
  2013年   30篇
  2012年   46篇
  2011年   44篇
  2010年   23篇
  2009年   32篇
  2008年   36篇
  2007年   43篇
  2006年   31篇
  2005年   32篇
  2004年   37篇
  2003年   32篇
  2002年   37篇
  2001年   12篇
  2000年   10篇
  1999年   6篇
  1998年   9篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   10篇
  1992年   5篇
  1991年   10篇
  1990年   7篇
  1989年   9篇
  1988年   7篇
  1987年   7篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   6篇
  1981年   10篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1968年   2篇
  1962年   3篇
排序方式: 共有727条查询结果,搜索用时 15 毫秒
41.
This review summarizes recent highlights of our joint work on the structure, evolution, and function of a family of highly complex proteins, the hemocyanins. They are blue-pigmented oxygen carriers, occurring freely dissolved in the hemolymph of many arthropods and molluscs. They are copper type-3 proteins and bind one dioxygen molecule between two copper atoms in a side-on coordination. They possess between 6 and 160 oxygen-binding sites, and some of them display the highest molecular cooperativity observed in nature. The functional properties of hemocyanins can be convincingly described by either the Monod-Wyman-Changeux (MWC) model or its hierarchical extension, the Nested MWC model; the latter takes into account the structural hierarchies in the oligomeric architecture. Recently, we applied these models to interpret the influence of allosteric effectors in detailed terms. Effectors shift the allosteric equilibria but have no influence on the oxygen affinities characterizing the various conformational states. We have shown that hemocyanins from species living at different environmental temperatures have a cooperativity optimum at the typical temperature of their natural habitat. Besides being oxygen carriers, some hemocyanins function as a phenoloxidase (tyrosinase/catecholoxidase) which, however, requires activation. Chelicerates such as spiders and scorpions lack a specific phenoloxidase, and in these animals activated hemocyanin might catalyse melanin synthesis in vivo. We propose a similar activation mechanism for arthropod hemocyanins, molluscan hemocyanins and tyrosinases: amino acid(s) that sterically block the access of phenolic compounds to the active site have to be removed. The catalysis mechanism itself can now be explained on the basis of the recently published crystal structure of a tyrosinase. In a series of recent publications, we presented the complete gene and primary structure of various hemocyanins from different molluscan classes. From these data, we deduced that the molluscan hemocyanin molecule evolved ca. 740 million years ago, prior to the separation of the extant molluscan classes. Our recent advances in the 3D cryo-electron microscopy of hemocyanins also allow considerable insight into the oligomeric architecture of these proteins of high molecular mass. In the case of molluscan hemocyanin, the structure of the wall and collar of the basic decamers is now rapidly becoming known in greater detail. In the case of arthropod hemocyanin, a 10-? structure and molecular model of the Limulus 8 × 6mer shows the amino acids at the various interfaces between the eight hexamers, and reveals histidine-rich residue clusters that might be involved in transferring the conformational signals establishing cooperative oxygen binding.  相似文献   
42.
Growth, substrate consumption, metabolite formation, biomass composition and respiratory parameters of Kluyveromyces marxianus ATCC 26548 were determined during aerobic batch and chemostat cultivations, using mineral medium with glucose as the sole carbon source, at 30 degrees C and pH 5.0. Carbon balances closed within 95-101% in all experiments. A maximum specific growth rate of 0.56 h(-1), a biomass yield on glucose of 0.51 g g(-1), and a maximum specific consumption of oxygen of 11.1 mmol g(-1) h(-1) were obtained during batch cultures. The concentration of excreted metabolites was very low at the culture conditions applied, representing 6% of the consumed carbon at most. Acetate and pyruvate were excreted to a larger extent than ethanol under the batch conditions, and the protein content accounted for 54.6% of the biomass dry weight. Steady states were obtained during chemostats at dilution rates of 0.1, 0.25 and 0.5 h(-1). At the two former dilution rates, cells grew at carbon limitation and the biomass yield on glucose was similar to that obtained under the batch conditions. Metabolite formation was rather low, accounting for a total of 0.005 C-mol C-mol(-1) substrate. At 0.5 h(-1), although the biomass yield on glucose was similar to the value obtained under the above-mentioned conditions, the cultivation was not under carbon limitation. Under this condition, 2-oxoglutarate, acetate, pyruvate and ethanol were the prevalent metabolites excreted. Total metabolite formation only accounted to 0.056 C-mol C-mol(-1) of substrate. A very high protein and a low carbohydrate content (71.9% and 9.6% of biomass dry weight, respectively) were measured in cells under this condition. It is concluded that K. marxianus aligns with the so-called aerobic-respiring or Crabtree-negative yeasts. Furthermore, it has one of the highest growth rates among yeasts, and a high capacity of converting sugar into biomass, even when carbon is not the limiting nutrient. These results provide useful data regarding the future application of K. marxianus in processes aimed at the production of biomass-linked compounds, with high yields and productivities.  相似文献   
43.

Background

Binding of chemokines to glycosaminoglycans (GAGs) is a crucial step in leukocyte recruitment to inflamed tissues.

Methods

A disaccharide compositional analysis of the HS dp6 fraction in combination with MS analysis of the CCL2-depleted dp6 fraction was the basis for target GAG ligand structure suggestions. Four experimentally-derived heparan sulfate hexasaccharides, two potentially chemokine-specific and two unspecific, have been docked to CCL2. Subsequent 300?ns molecular dynamics simulations were used to improve the docked complexes.

Results

Hexasaccharides with four sulfations and no acetylations are suggested for selective and high affinity chemokine binding. Using the Antithromin-III/heparin complex as positive control for docking, we were able to recover the correct complex structure only if the previously liganded ATIII structure was used as input. Since the liganded structure is not known for a CCL2-GAG complex, we investigated if molecular dynamics simulations could improve initial docking results. We found that all four GAG oligosaccharides ended up in close contact with the known binding residues after about 100?ns simulation time.

Conclusions

A discrimination of specific vs. unspecific CCL2 GAG ligands is not possible by this approach. Long-time molecular dynamics simulations are, however, well suited to capture the delicate enthalpy/entropy balance of GAG binding and improve results obtained from docking.

General significance

With the comparison of two methods, MS-based ligand identification and molecular modelling, we have shown the current limitations of our molecular understanding of complex ligand binding which is could be due to the numerical inaccessibility of ligand-induced protein conformational changes.  相似文献   
44.
Kinetic and binding studies involving a model DNA cytosine-5-methyltransferase, M.HhaI, and a 37-mer DNA duplex containing a single hemimethylated target site were applied to characterize intermediates on the reaction pathway. Stopped-flow fluorescence studies reveal that cofactor S-adenosyl-l-methionine (AdoMet) and product S-adenosyl-l-homocysteine (AdoHcy) form similar rapidly reversible binary complexes with the enzyme in solution. The M.HhaI.AdoMet complex (k(off) = 22 s(-)1, K(D) = 6 microm) is partially converted into products during isotope-partitioning experiments, suggesting that it is catalytically competent. Chemical formation of the product M.HhaI.(Me)DNA.AdoHcy (k(chem) = 0.26 s(-)1) is followed by a slower decay step (k(off) = 0.045 s(-)1), which is the rate-limiting step in the catalytic cycle (k(cat) = 0.04 s(-)1). Analysis of reaction products shows that the hemimethylated substrate undergoes complete (>95%) conversion into fully methylated product during the initial burst phase, indicating that M.HhaI exerts high binding selectivity toward the target strand. The T250N, T250D, and T250H mutations, which introduce moderate perturbation in the catalytic site, lead to substantially increased K(D)(DNA(ternary)), k(off)(DNA(ternary)), K(M)(AdoMet(ternary)) values but small changes in K(D)(DNA(binary)), K(D)(AdoMet(binary)), k(chem), and k(cat). When the target cytosine is replaced with 5-fluorocytosine, the chemistry step leading to an irreversible covalent M.HhaI.DNA complex is inhibited 400-fold (k(chem)(5FC) = 0.7 x 10(-)3 s(-)1), and the Thr-250 mutations confer further dramatic decrease of the rate of the covalent methylation k(chem). We suggest that activation of the pyrimidine ring via covalent addition at C-6 is a major contributor to the rate of the chemistry step (k(chem)) in the case of cytosine but not 5-fluorocytosine. In contrast to previous reports, our results imply a random substrate binding order mechanism for M.HhaI.  相似文献   
45.
Activation of sugars into nucleotide sugars is critical for their entry into biosynthetic pathways. In eukaryotic cells, the activation of the acidic nine-carbon sugar sialic acid to CMP-sialic acid takes place in the cell nucleus, whereas all other nucleotide sugars are made in the cytoplasm. Molecular cloning of vertebrate CMP-sialic acid synthetases confirmed the nuclear localization and introduced new molecular tools for directly exploring the functional mechanisms of the enzymes, as well as the physiological relevance of their nuclear transport. Although major advances have been made in understanding structure-function relationships and defining elements involved in the nuclear transport, the riddle surrounding the physiological relevance of nuclear localization awaits resolution.  相似文献   
46.
The phosphoinositide signalling pathway is important in plant responses to extracellular and intracellular signals. To elucidate the physiological functions of phosphoinositide-specific phopspholipase C, PI-PLC, targeted knockout mutants of PpPLC1, a gene encoding a PI-PLC from the moss Physcomitrella patens, were generated via homologous recombination. Protonemal filaments of the plc1 lines show a dramatic reduction in gametophore formation relative to wild type: this was accompanied by a loss of sensitivity to cytokinin. Moreover, plc1 appeared paler than the wild type, the result of an altered differentiation of chloroplasts and reduced chlorophyll levels compared with wild type filaments. In addition, the protonemal filaments of plc1 have a strongly reduced ability to grow negatively gravitropically in the dark. These effects imply a significant role for PpPLC1 in cytokinin signalling and gravitropism.  相似文献   
47.
CLIP-170 family proteins regulate microtubule plus end dynamics. Two reports published in this issue of Developmental Cell show that Bik1 and tip1p, the CLIP-170-like proteins of budding and fission yeast, are carried to microtubule plus ends by kinesin motor proteins. These findings indicate a complex interplay between microtubule-associated proteins and suggest a novel mechanism by which kinesin proteins stabilize microtubules.  相似文献   
48.
Hereditary spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders for which >/=14 different genetic loci have been identified. In some SCA types, expanded tri- or pentanucleotide repeats have been identified, and the length of these expansions correlates with the age at onset and with the severity of the clinical phenotype. In several other SCA types, no genetic defect has yet been identified. We describe a large, three-generation family with early-onset tremor, dyskinesia, and slowly progressive cerebellar ataxia, not associated with any of the known SCA loci, and a mutation in the fibroblast growth factor 14 (FGF14) gene on chromosome 13q34. Our observations are in accordance with the occurrence of ataxia and paroxysmal dyskinesia in Fgf14-knockout mice. As indicated by protein modeling, the amino acid change from phenylalanine to serine at position 145 is predicted to reduce the stability of the protein. The present FGF14 mutation represents a novel gene defect involved in the neurodegeneration of cerebellum and basal ganglia.  相似文献   
49.
In one method of metabolic flux analysis, simulated mass spectrometry data is fitted to measured mass distributions of metabolites that are isolated from cultures with defined feeding of (13)C-labeled substrates. Doing so, simulated mass distributions must be corrected for the presence of naturally occurring isotopes. A method that was recently introduced for this purpose consists of consecutive correction steps for each isotope of each element in the considered compound. Here we show that all isotopes of each individual element must, however, be corrected in one single step. Furthermore, it is shown that the source of information with respect to isotopic compositions of the elements needs to be chosen with care.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号