首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   13篇
  2021年   1篇
  2019年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   12篇
  2002年   10篇
  2001年   13篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1983年   2篇
排序方式: 共有143条查询结果,搜索用时 140 毫秒
51.
Pathogenic bacteria are specifically adapted to bind to their customary host. Disease is then caused by subsequent colonization and/or invasion of the local environmental niche. Initial binding of Haemophilus influenzae type b to the human nasopharynx is facilitated by Hib pili, filaments expressed on the bacterial surface. With three-dimensional reconstruction of electron micrograph images, we show that Hib pili comprise a helix 70 A in diameter with threefold symmetry. The Hib pilus filament has 3.0 subunits per turn, with each set of three subunits translated 26.9 A along and rotated 53 degrees about the helical axis. Amino acid sequence analysis of pilins from Hib pili and from P-pili expressed on uropathogenic Escherichia coli were used to predict the physical location of the highly variable and immunogenic region of the HifA pilin in the Hib pilus structure. Structural differences between Hib pili and P-pili suggest a difference in the strategies by which bacteria remain bound to their host cells: P-pili were shown to be capable of unwinding to five times their original length (E. Bullitt and L. Makowski, Nature 373:164-167, 1995), while damage to Hib pili occurs by slight shearing of subunits with respect to those further along the helical axis. This capacity to resist unwinding may be important for continued adherence of H. influenzae type b to the nasopharynx, where the three-stranded Hib pilus filaments provide a robust tether to withstand coughs and sneezes.  相似文献   
52.
53.
54.
Two mechanisms have emerged as major regulators of membrane shape: BAR domain‐containing proteins, which induce invaginations and protrusions, and nuclear promoting factors, which cause generation of branched actin filaments that exert mechanical forces on membranes. While a large body of information exists on interactions of BAR proteins with membranes and regulatory proteins of the cytoskeleton, little is known about connections between these two processes. Here, we show that the F‐BAR domain protein pacsin2 is able to associate with actin filaments using the same concave surface employed to bind to membranes, while some other tested N‐BAR and F‐BAR proteins (endophilin, CIP4 and FCHO2) do not associate with actin. This finding reveals a new level of complexity in membrane remodeling processes.  相似文献   
55.
Coronins are F-actin-binding proteins that are involved, in concert with Arp2/3, Aip1, and ADF/cofilin, in rearrangements of the actin cytoskeleton. An understanding of coronin function has been hampered by the absence of any structural data on its interaction with actin. Using electron microscopy and three-dimensional reconstruction, we show that coronin-1A binds to three protomers in F-actin simultaneously: it bridges subdomain 1 and subdomain 2 of two adjacent actin subunits along the same long-pitch strand, and it staples subdomain 1 and subdomain 4 of two actin protomers on different strands. Such a mode of binding explains how coronin can stabilize actin filaments in vitro. In addition, we show which residues of F-actin may participate in the interaction with coronin-1A. Human nebulin and Xin, as well as Salmonella invasion protein A, use a similar mechanism to stabilize actin filaments. We suggest that the stapling of subdomain 1 and subdomain 4 of two actin protomers on different strands is a common mechanism for F-actin stabilization utilized by many actin-binding proteins that have no homology.  相似文献   
56.
In an isolated population of Drosophila melanogaster on Ishigaki Island the chromosomal distribution of several retrotransposons, including copia, 412, 297, 17.6, I, and jockey elements, was examined by in situ hybridization. In this population the cosmopolitan inversion, In(2L)t, is known to exist in high frequency. One major haplotype concerning the occupied sites of the transposable elements was identified in the In(2L)t-carrying chromosomes. This haplotype is suggested to be the ancestral one. The age of the inversion in this local population was estimated to be 1,400 generations. The transposition rates of these elements were estimated based on the age of the inversion and the number of the elements lost and gained. The excision rates were in the range from 9.13 x 10(-5) to 2.25 x 10(-4) per site per generation. They were similar each other in the copia-like elements as well as in the LINE-like elements. The rate was higher in the copia-like elements than in the LINE-like elements. Insertions occurred in the range from 6.79 x 10(-4) to 9.05 x 10(-4) per element per generation. It is herein shown that both insertions and excisions occurred at a significantly higher rate in this population than in the laboratory.   相似文献   
57.
The endogenous Cl- conductance of Spodoptera frugiperda (Sf9) cells was studied 20-35 h after plating out of either uninfected cells or cells infected by a baculovirus vector carrying the cloned beta-galactosidase gene (beta-Gal cells). With the cation Tris+ in the pipette and Na+ in the bath, the reversal potential of whole-cell currents was governed by the prevailing Cl- equilibrium potential and could be fitted by the Goldman-Hodgkin-Katz equation with similar permeabilities for uninfected and beta-Gal cells. In the frequency range 0.12 < f < 300 Hz, the power density spectrum of whole-cell Cl- currents could be fitted by three Lorentzians. Independent of membrane potential, >50% of the total variance of whole-cell current fluctuations was accounted for by the low frequency Lorentzian (fc = 0.40 +/- 0.03 Hz, n = 6). Single-Cl- channels showed complex gating kinetics with long lasting (seconds) openings interrupted by similar long closures. In the open state, channels exhibited fast burst-like closures. Since the patches normally contained more than a single channel, it was not possible to measure open and closed dwell-time distributions for comparing single-Cl- channel activity with the kinetic features of whole-cell currents. However, the power density spectrum of Cl- currents of cell-attached and excised outside-out patches contained both high and low frequency Lorentzian components, with the corner frequency of the slow component (fc = 0.40 +/- 0.02 Hz, n = 4) similar to that of whole-cell current fluctuations. Chloride channels exhibited multiple conductance states with similar Goldman-Hodgkin-Katz-type rectification. Single-channel permeabilities covered the range from approximately 0.6.10(-14) cm5/s to approximately 6.10(-14) cm3/s, corresponding to a limiting conductance (gamma 150/150) of approximately 3.5 pS and approximately 35 pS, respectively. All states reversed near the same membrane potential, and they exhibited similar halide ion selectivity, P1 > PCl approximately PBr. Accordingly, Cl- current amplitudes larger than current flow through the smallest channel unit resolved seem to result from simultaneous open/shut events of two or more channel units.  相似文献   
58.
Angle-layered aggregates of F-actin are net-like structures induced by Mg2+ concentrations below that used to form paracrystals. These aggregates incorporate the angular disorder of subunits, which has been described elsewhere for isolated actin filaments. Because this disorder is incorporated into the aggregates in solution at the time they are formed, the possibility of negative stain preparation being responsible for the disorder is excluded. The simple two-layered geometry of the angle-layered aggregate provides information about the shape of the component actin filaments free from the superposition of large numbers of layers. A model for the filament shape, derived from single filaments and confirmed by the angle-layered aggregate, is different from those that have previously emerged from paracrystal studies. An understanding of the interfilament bond in both the angle-layered aggregate and the paracrystal allows one to reconcile these different models. We have found a bipolar bonding rule, with staggered crossover points in the angle-layered aggregate, which we suggest is also responsible for Mg2+ paracrystals. This bonding rule can explain the apparent alignment of crossover points in adjacent filaments in paracrystals as a consequence of the superposition of staggered filaments.  相似文献   
59.
The Escherichia coli RecA protein catalyzes homologous genetic recombination by forming helical polymers around DNA molecules. These polymers have an ATPase activity, which is essential for the movement of strands between two DNA molecules. One obstacle to structural studies of the RecA filament has been that the ATPase results in a dynamical polymer containing a mixture of states with respect to the bound ATP and its hydrolytic products. We have formed filaments which are trapped in the ADP-Pi state by substituting AIF4- for the Pi, and have used these stable filaments to generate a three-dimensional reconstruction from electron micrographs. The resolution of the reconstruction is sufficient to resolve the 38-k RecA subunit into two nearly equal domains. This reconstruction provides the most detailed view yet of the RecA protein, and serves as a framework within which existing biochemical data on RecA can be understood.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号