首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1581篇
  免费   105篇
  2023年   3篇
  2022年   7篇
  2021年   24篇
  2020年   15篇
  2019年   35篇
  2018年   41篇
  2017年   33篇
  2016年   44篇
  2015年   66篇
  2014年   74篇
  2013年   129篇
  2012年   148篇
  2011年   142篇
  2010年   82篇
  2009年   71篇
  2008年   112篇
  2007年   89篇
  2006年   87篇
  2005年   76篇
  2004年   72篇
  2003年   62篇
  2002年   65篇
  2001年   10篇
  2000年   10篇
  1999年   15篇
  1998年   10篇
  1997年   10篇
  1996年   18篇
  1995年   6篇
  1994年   18篇
  1993年   11篇
  1992年   7篇
  1991年   10篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   8篇
  1986年   5篇
  1985年   11篇
  1984年   5篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   9篇
  1979年   4篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1970年   1篇
排序方式: 共有1686条查询结果,搜索用时 187 毫秒
81.
Aquifex aeolicus 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the condensation of arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) by favoring the activation of a water molecule coordinated to the active-site metal ion. Cys11, His185, Glu222 and Asp233 are the other metal ligands. Wild-type KDO8PS is purified with Zn(2+) or Fe(2+) in the active site, but maximal activity in vitro is achieved when the endogenous metal is replaced with Cd(2+). The H185G enzyme retains 8% of the wild-type activity. ICP mass spectrometry analysis indicates that loss of His185 decreases the enzyme affinity for Fe(2+), but not for Zn(2+). However, maximal activity is again achieved by substitution of the endogenous metal with Cd(2+). We have determined the X-ray structures of the Cd(2+) H185G enzyme in its substrate-free form, and in complex with PEP, and PEP plus A5P. These structures show a normal amount of Cd(2+) bound, suggesting that coordination by His185 is not essential to retain Cd(2+) in the active site. Nonetheless, there are significant changes in the coordination sphere of Cd(2+) with respect to the wild-type enzyme, as the carboxylate moiety of PEP binds directly to the metal ion and replaces water and His185 as ligands. These observations indicate that the primary function of His185 in A.aeolicus KDO8PS is to orient PEP in the active site of the enzyme in such a way that a water molecule on the sinister (si) side of PEP can be activated by direct coordination to the metal ion.  相似文献   
82.
Kynurenine 3-mono-oxygenase (KMO) inhibitors reduce 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) neosynthesis and facilitate kynurenine metabolism towards kynurenic acid (KYNA) formation. They also reduce tissue damage in models of focal or transient global cerebral ischemia in vivo. We used organotypic hippocampal slice cultures exposed to oxygen and glucose deprivation (OGD) to investigate KMO mechanism(s) of neuroprotective activity. Exposure of the slices to 30 min of OGD caused CA1 pyramidal cell death and significantly decreased the amount of KYNA released in the incubation medium. The KMO inhibitors (m-nitrobenzoyl)-alanine (30-100 micro m) or 3,4-dimethoxy-[-N-4-(nitrophenyl)thiazol-2yl]-benzenesulfonamide (1-10 micro m) reduced post-ischemic neuronal death and increased KYNA concentrations in slice incubation media. The maximal concentration of KYNA detected in the incubation media of slices treated with KMO inhibitors was approximately 50 nm and was too low to efficiently interact with alpha7 nicotinic acetylcholine receptors or with the glycineb site of N-methyl-d-aspartate (NMDA) receptors. On the other hand, the addition of either 3-HK or QUIN (1-10 micro m) to OGD-exposed hippocampal slices prevented the neuroprotective activity of KMO inhibitors. Our results suggest that KMO inhibitors reduce the neuronal death found in the CA1 region of organotypic hippocampal slices exposed to 30 min of OGD by decreasing the local synthesis of 3-HK and QUIN.  相似文献   
83.
Bordo D  Bork P 《EMBO reports》2002,3(8):741-746
Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. They are found as tandem repeats, with the C-terminal domain hosting the properly structured active-site Cys residue, as single domain proteins or in combination with distinct protein domains. An increasing number of reports indicate that rhodanese modules are versatile sulfur carriers that have adapted their function to fulfill the need for reactive sulfane sulfur in distinct metabolic and regulatory pathways. Recent investigations have shown that rhodanese domains are also structurally related to the catalytic subunit of Cdc25 phosphatase enzymes and that the two enzyme families are likely to share a common evolutionary origin. In this review, the rhodanese/Cdc25 phosphatase superfamily is analyzed. Although the identification of their biological substrates has thus far proven elusive, the emerging picture points to a role for the amino-acid composition of the active-site loop in substrate recognition/specificity. Furthermore, the frequently observed association of catalytically inactive rhodanese modules with other protein domains suggests a distinct regulatory role for these inactive domains, possibly in connection with signaling.  相似文献   
84.
The relationship between hematopoietic cells and endothelial cells has been seen as an indication that a common progenitor, the hemangioblast, gives rise to both cell types in the yolk sac, the initial site of hematopoiesis and blood vessel formation during mammalian development. The existence of angioblast-like circulating endothelial precursor cells in adults humans has recently been suggested. In this review, we have summarized the principle mechanisms involved in the cross-talk signaling pathway between hematopoiesis and angiogenesis in order to further understand how the hematopoietic and vascular systems are established during the development.  相似文献   
85.
DNA extraction and storage methods have been evaluated with laboratory-reared leafhoppers and/or field-collected leafhoppers and psyllids. Detection of four different phytopathogenic phytoplasmas, belonging to three taxonomic groups, has been achieved by several direct or nested polymerase chain reaction (PCR) methods with such DNA extracts. Reactions differed in both the 16/23S ribosomal primer pairs used and the specific assay and cycling conditions. Merits and possible hindrances of the various primer pairs, in relation to insect DNA extracts, are discussed. However, identification of the phytoplasma(s) necessarily relied on comparison of the polymorphism in length of the amplified DNA fragments obtained by restriction with appropriate endonucleases. Endonuclease digestion is crucial for determining the identity (subgroup affiliation) of phytoplasmas of the same groups that can be carried by an individual vector.  相似文献   
86.
Mouse models of insulin resistance   总被引:1,自引:0,他引:1  
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.  相似文献   
87.
Nineteen reduced amide, monohydroxy- or dihydroxyethylene-based transition-state peptidomimetics, known to be good inhibitors of the aspartic protease of HIV-1, were tested against a secreted aspartic protease (Sap2), purified from the culture medium of a virulent strain of Candida albicans. Ten of these compounds exhibited IC(50)s against Sap2 lower than 15 microM; the best inhibitor, Kyn-Val-Phe-Psi[OH-OH]-Phe-Val-Kyn, when added to the C. albicans culture, repressed the hydrolysis of bovine serum albumin (BSA), contained in the culture medium, and inhibited the growth of the fungus.  相似文献   
88.
Targeted gene disruption or overexpression of 12/15-lipoxygenase in mice on the genetic background of apolipoprotein E or low density lipoprotein-receptor (LDL-R) deficiency has implicated 12/15-lipoxygenase in atherogenesis. The data support indirectly a role for 12/15-lipoxygenase in the oxidative modification of low density lipoprotein. In this study we set out to explore other potential mechanisms for 12/15-lipoxygenase in atherosclerosis using apolipoprotein B mRNA editing catalytic polypeptide-1/LDL-R double-deficient mice, a model highly related to the human condition of familial hypercholesterolemia. 12/15-Lipoxygenase deficiency in this strain led to approximately 50% decrease in aortic lesions in male and female mice at 8 months on a chow diet in the absence of cholesterol differences. While studying 12/15-lipoxygenase-deficient macrophages in culture, we discovered a remarkable selective defect (75-90% decrease) in interleukin-12 production but not in tumor necrosis factor-alpha or nitric oxide release, in response to lipopolysaccharide in the presence or absence of interferon-gamma priming. The lipopolysaccharide/interferon-gamma response was associated with a 33-50% decrease in nuclear interferon consensus sequence-binding protein, which is consistent with interferon consensus sequence-binding protein containing protein complex-dependent regulation of the interleukin-12 p40 gene. The decrease in interleukin-12 production was recapitulated in vivo in mouse aortas of the triple knockout group and was reflected in a marked decrease in interferon-gamma expression. The data provide support for a novel mechanism linking the 12/15-lipoxygenase pathway to a known immunomodulatory Th1 cytokine in atherogenesis.  相似文献   
89.
Apple proliferation is a phytoplasma-associated disease transmitted by insects causing serious damage and economic losses to apple orchards. Investigations were carried out in 1999 and 2000 in northwestern Italy to identify the vector of apple proliferation and to study its population dynamics. Yellow sticky traps and beat tray samples revealed the presence of the psyllid Cacopsylla melanoneura (Forster) in eight apple orchards in the Aosta Valley. The species completes one generation per year; the overwintered psyllids colonized apple trees beginning in late January, whereas the springtime generation was observed beginning in early May. The offspring adults remained in apple orchards until the end of June, when they began to move onto other hosts. During 1999 and 2000, all apple trees present in the investigated orchards were visually checked to assess the fluctuation of disease symptoms. Polymerase chain reaction and restriction fragment-length polymorphism confirmed the presence of the apple proliferation phytoplasmas in both overwintering and offspring insects as well as in symptomatic apple plants. The ability of C. melanoneura to vector the disease was assessed by preliminary transmission trials. Overwintered psyllids, collected in the most affected orchards, caged on healthy apple test plants transmitted apple proliferation phytoplasmas.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号