首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2365篇
  免费   106篇
  国内免费   2篇
  2023年   12篇
  2022年   24篇
  2021年   47篇
  2020年   41篇
  2019年   44篇
  2018年   54篇
  2017年   38篇
  2016年   77篇
  2015年   101篇
  2014年   104篇
  2013年   163篇
  2012年   165篇
  2011年   204篇
  2010年   110篇
  2009年   90篇
  2008年   116篇
  2007年   124篇
  2006年   123篇
  2005年   111篇
  2004年   87篇
  2003年   74篇
  2002年   78篇
  2001年   37篇
  2000年   31篇
  1999年   37篇
  1998年   19篇
  1997年   16篇
  1996年   14篇
  1995年   19篇
  1994年   11篇
  1993年   18篇
  1992年   27篇
  1991年   21篇
  1990年   17篇
  1989年   20篇
  1988年   24篇
  1987年   15篇
  1986年   14篇
  1985年   18篇
  1984年   16篇
  1983年   10篇
  1982年   11篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   9篇
  1977年   10篇
  1976年   9篇
  1974年   9篇
  1967年   5篇
排序方式: 共有2473条查询结果,搜索用时 15 毫秒
61.

Finite element method (FEM) simulations have been carried out on free-standing and finite dielectric substrate-supported eccentric (i) silica core-gold nanoshell dimers and (ii) gold core-silica nanoshell dimers for understanding their near- and far-field plasmonic properties. In the case of eccentric silica core-gold nanoshell dimers, multiple peaks are observed in the near- and far-field spectra due to the plasmon hybridization. The number of peaks is found to be sensitive to the core offset parameters of the nanoshells forming nanodimer. The wavelength locations of the peaks due to the constructive coupling of the lower order modes found relatively more sensitive to the dielectric substrate. The number of peaks in the near- and far-field spectra found the same presence and absence of the dielectric substrate. The values of full width at half maximum (FWHM) of the peaks observed in the near-field spectra are found larger as compared to those observed in the far-field spectra. In contrast, in the case of eccentric gold core-silica nanoshell dimers, multiple peaks have not been observed. The FWHM of the observed peak is found sensitive to the core offset parameters of the nanoshells, and the number of peaks in the near field- and far-field spectra found not same in the presence and absence of the dielectric substrate. Moreover, the differences in near- and far-field spectra of plasmonically coupled (i) concentric nanoshells, (ii) eccentric nanoshells, and (iii) concentric and eccentric nanoshells also investigated numerically.

  相似文献   
62.
63.
64.
Type 2 diabetes mellitus (T2DM) is linked with Glycogen synthase kinase-3 β.Therefore, it is ofinterest to document molecular docking analysis data of compounds from Justica adhatoda L with glycogen synthase kinase-3 β. We report the binding features of ethambutol, pyrazinamide, stigmasterol and vasicoline with GSK-3 β.  相似文献   
65.
Beta-catenin is linked with colorectal cancer (CRC). Therefore, it is of interest to design and develop novel compounds to combat CRC. Hence, we document compounds (chlorogenic acid, gallic acid, protocatechuic acid, quercetin and vanillic acid) from Lycopersicon esculentum with optimal binding features for further consideration.  相似文献   
66.
Chronological age conveys only a rough approximation of the maturational status of a person whereas skeletal maturity indicators give a more accurate estimation. Therefore, it is of interest to document the correlation between chronological and skeletal age using CVMI and modified MP3 methods. A total of 39 subjects between the age ranges of 9-16 years were selected for this study. Pre-treatment lateral cephalograms and hand-wrist radiographs of the subjects were used. The skeletal age was analyzed by the Cervical Vertebrae Maturity Index (CVMI) and modified MP3 methods. The data was analyzed with SPSS software version 23.00. Kendall''s Tau correlation test was performed to estimate the correlation between chronological age and skeletal age among the subjects and a linear regression test was also performed. Positive correlation was found between chronological age and skeletal age assessed by CVMI method (r= 0.398) and modified MP3 method (r=0.382) with p value >0.003. Thus it can be concluded that there was a positive correlation between chronological age and skeletal age among all the subjects.  相似文献   
67.
Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large‐scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human‐induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human‐induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy–water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy–water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.  相似文献   
68.
Molecular and Cellular Biochemistry - β-cell dysfunction is a critical determinant for both type 1 diabetes and type 2 diabetes and β-cells are shown to be highly susceptible to cellular...  相似文献   
69.

India is endowed with a variety of coastal wetlands viz., mangroves, seagrasses, saltmarshes, coral reefs, lagoons and tidal flats, and the country is also a signatory to the Ramsar Convention on Wetlands and the Convention of Biological Diversity, besides having a robust framework of laws and policies, governing the wetland conservation. However, the conservation strategies can better be improved in the context of increasing pressures and threats and limited success of restoration/rehabilitation. Land conversion and ecological degradation of coastal wetlands are the stressors, associated with rapid coastal developmental activities and climate change. The coastal wetlands require desired habitat niche and hence, the conversion of coastal wetlands to other land uses (including agricultural and urban lands) may lead to permanent loss, whereas ecologically degraded coastal wetlands may be resilient if supported by effective protection measures. Preventing the habitat conversion and maximizing the adaptive potential (viz., the ability of populations or species to adapt to rapid environmental change with minimal disruption) by preserving the ecological health are the need of the hour to safeguard the existing coastal wetlands and sustain the provisional ecosystem services offered by them rather than short-term increase in area by unproductive restoration/rehabilitation efforts. Since coastal wetlands are flow through ecosystems, preserving the hydrological connectivity, facilitating the connectivity between adjacent ecosystems and protection of natural corridors are potential strategies that are required to enhance the adaptive potential of coastal wetlands. This analysis calls for site-specific, long-term and integrated ecosystem-based protection, management and rehabilitation strategies based on scientific principles and enforcing the effective legislative measures to regularize the coastal developmental activities in India.

  相似文献   
70.
Potato (Solanum tuberosum) multicystatin (PMC) is a unique cystatin composed of eight repeating units, each capable of inhibiting cysteine proteases. PMC is a composite of several cystatins linked by trypsin-sensitive (serine protease) domains and undergoes transitions between soluble and crystalline forms. However, the significance and the regulatory mechanism or mechanisms governing these transitions are not clearly established. Here, we report the 2.2-Å crystal structure of the trypsin-resistant PMC core consisting of the fifth, sixth, and seventh domains. The observed interdomain interaction explains PMC’s resistance to trypsin and pH-dependent solubility/aggregation. Under acidic pH, weakening of the interdomain interactions exposes individual domains, resulting in not only depolymerization of the crystalline form but also exposure of cystatin domains for inhibition of cysteine proteases. This in turn allows serine protease–mediated fragmentation of PMC, producing ∼10-kD domains with intact inhibitory capacity and faster diffusion, thus enhancing PMC’s inhibitory ability toward cysteine proteases. The crystal structure, light-scattering experiments, isothermal titration calorimetry, and site-directed mutagenesis confirmed the critical role of pH and N-terminal residues in these dynamic transitions between monomer/polymer of PMC. Our data support a notion that the pH-dependent structural regulation of PMC has defense-related implications in tuber physiology via its ability to regulate protein catabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号