首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   53篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   9篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   19篇
  2015年   48篇
  2014年   38篇
  2013年   43篇
  2012年   65篇
  2011年   56篇
  2010年   42篇
  2009年   44篇
  2008年   65篇
  2007年   59篇
  2006年   46篇
  2005年   40篇
  2004年   40篇
  2003年   42篇
  2002年   31篇
  2001年   14篇
  2000年   7篇
  1999年   8篇
  1998年   10篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   2篇
  1993年   5篇
  1992年   4篇
  1990年   3篇
  1988年   6篇
  1984年   3篇
  1983年   2篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1969年   1篇
  1962年   1篇
  1958年   1篇
  1957年   2篇
  1956年   1篇
  1954年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有832条查询结果,搜索用时 62 毫秒
51.
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.Among the different amino acids, the sulfur containing amino acids like cysteine are particularly susceptible to oxidation by reactive oxygen species (ROS)1 (1, 2). Recent studies suggest that the sulfenome, the initial oxidation products of cysteine residues, functions as an intermediate state of redox signaling (3 5). Thus, identifying the sulfenome under oxidative stress is a way to detect potential redox sensors (6, 7).This central role of the sulfenome in redox signaling provoked chemical biologists to develop strategies for sensitive detection and identification of sulfenylated proteins. The in situ trapping of the sulfenome is challenging because of two major factors: (1) the highly reactive, transient nature of sulfenic acids, which might be over-oxidized in excess of ROS, unless immediately protected by disulfide formation (7); (2) the intracellular compartmentalization of the redox state that might be disrupted during extraction procedures, resulting in artificial non-native protein oxidations (8, 9). Having a sulfur oxidation state of zero, sulfenic acids can react as both electrophile and nucleophile, however, direct detection methods are based on the electrophilic character of sulfenic acid (10). In 1974, Allison and coworkers reported a condensation reaction between the electrophilic sulfenic acid and the nucleophile dimedone (5,5-dimethyl-1,3-cyclohexanedione), producing a corresponding thioether derivative (11). This chemistry is highly selective and, since then, has been exploited to detect dimedone modified sulfenic acids using mass spectrometry (12). However, dimedone has limited applications for cellular sulfenome identification because of the lack of a functional group to enrich the dimedone tagged sulfenic acids. Later, dimedone-biotin/fluorophores conjugates have been developed, which allowed sensitive detection and enrichment of sulfenic acid modified proteins (13 15). This approach, however, was not always compatible with in vivo cellular sulfenome analysis, because the biotin/fluorophores-conjugated dimedone is membrane impermeable (9) and endogenous biotinylated proteins might appear as false positives.More recently, the Carroll lab has developed DYn-2, a sulfenic acid specific chemical probe. This chemical probe consists of two functional units: a dimedone scaffold for sulfenic acid recognition and an alkyne chemical handle for enrichment of labeled proteins (9). Once the sulfenic acids are tagged with the DYn-2 probe, they can be biotinylated through click chemistry (16). The click reaction used here is a copper (I)-catalyzed azide-alkyne cycloaddition reaction (17), also known as azide-alkyne Huisgen cycloaddition (16). With this chemistry, a complex is formed between the alkyne functionalized DYn-2 and the azide functionalized biotin. This biotin functional group facilitates downstream detection, enrichment, and mass spectrometry based identification (Fig. 1). In an evaluation experiment, DYn-2 was found to efficiently detect H2O2-dependent sulfenic acid modifications in recombinant glutathione peroxidase 3 (Gpx3) of budding yeast (18). Moreover, it was reported that DYn-2 is membrane permeable, non-toxic, and a non-influencer of the intracellular redox balance (17, 18). Therefore, DYn-2 has been suggested as a global sulfenome reader in living cells (17, 18), and has been applied to investigate epidermal growth factor (EGF) mediated protein sulfenylation in a human epidermoid carcinoma A431 cell line and to identify intracellular protein targets of H2O2 during cell signaling (17).Open in a separate windowFig. 1.Schematic views of the molecular mechanism of the DYn-2 probe and the strategy to identify DYn-2 trapped sulfenylated proteins. A, DYn-2 specifically detects sulfenic acid modifications, but no other thiol modifications. B, Biotinylation of the DYn-2 tagged proteins by click reaction. C, Once DYn-2 tagged proteins are biotinylated, a streptavidin-HRP (Strep-HRP) blot visualizes sulfenylation, or alternatively, after enrichment on avidin beads, proteins are identified by mass spectrometry analysis.Here, we selected the DYn-2 probe to identify the sulfenome in plant cells under oxidative stress. Through a combination of biochemical, immunoblot and mass spectrometry techniques, and TAIR10 database and SUBA3-software predictions, we can claim that DYn-2 is able to detect sulfenic acids on proteins located in different subcellular compartments of plant cells. We identified 226 sulfenylated proteins in response to an H2O2 treatment of Arabidopsis cell suspensions, of which 123 proteins are new candidates for cysteine oxidative post-translational modification (PTM) events.  相似文献   
52.
Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential.  相似文献   
53.

Background

Previous studies have reported an inverse association between vitamin D and childhood dental caries, but whether this is causal is unclear.

Objective

To determine the causal effect of circulating 25-hydroxyvitamin D concentration on dental caries experience, early caries onset and the requirement for a dental general anesthetic.

Design

A Mendelian randomization study was undertaken, using genetic variants known to be associated with circulating 25-hydroxyvitamin D concentrations in 5,545 European origin children from the South West of England. Data on caries and related characteristics were obtained from parental and child completed questionnaires between 38 and 91 months and clinical assessments in a random 10% sample at 31, 44 and 61 months.

Results

In multivariable confounder adjusted analyses no strong evidence for an association of 25-hydroxyvitamin D with caries experience or severity was found but there was evidence for an association with early caries onset, or having a general anesthetic for dental problems. In Mendelian randomization analysis the odds ratio for caries experience per 10 nmol/L increase in 25-hydroxyvitamin D was 0.93 (95% confidence interval: 0.83, 1.05; P = 0.26) and the odds ratio for dental general anaesthetic per 10 nmol/L increase in 25-hydroxyvitamin D was 0.96 (95% confidence interval: 0.75, 1.22; P = 0.72).

Conclusions

This Mendelian randomization study provides little evidence to support an inverse causal effect of 25-hydroxyvitamin D on dental caries. However, the estimates are imprecise and a larger study is required to refine these analyses.  相似文献   
54.

Background

Little is known about the association between cardiovascular (CV) health and health insurance status. We hypothesized that U.S. adults without health insurance coverage would have a lower likelihood of ideal cardiovascular health.

Methods and Results

Using National Health and Nutrition Examination Survey (NHANES) data from 2007–2010, we examined the relationship between health insurance status and ideal CV health in U.S. adults aged ≥19 years and <65 (N = 3304). Ideal CV health was defined by the American Heart Association (AHA) as the absence of clinically manifested CV disease and the simultaneous presence of 6–7 “ideal” CV health factors and behaviors. Logistic regression modeling was used to determine the relationship between health insurance status and the odds of ideal CV health. Of the U.S. adult population, 5.4% attained ideal CV health, and 23.5% were without health insurance coverage. Those without health insurance coverage were more likely to be young (p<0.0001), male (p<0.0001), non-white (p<0.0001), with less than a high school degree (p<0.0001), have a poverty-to-income ratio less than 1 (p<0.0001) and unemployed (p<0.0001) compared to those with coverage. Lack of health insurance coverage was associated with a lower likelihood of ideal CV health; however, this relationship was attenuated by socioeconomic status.

Conclusions

U.S. adults without health insurance coverage are less likely to have ideal CV health. Population-based strategies and interventions directed at the community-level may be one way to improve overall CV health and reach this at-risk group.  相似文献   
55.
Virus removal from a high purity factor IX, Replenine®-VF, by filtration using a Planova 15N filter has been investigated. A wide range of relevant and model enveloped and non-enveloped viruses, of various sizes, were effectively removed by this procedure. Virus removal was confirmed to be effective when different batches of filter were challenged with poliovirus-1. It was confirmed that intentionally modified filters that failed the leakage test had completely lost the ability to remove virus, thus confirming that this test demonstrates gross filter failure. In the case of the more sensitive integrity test based on gold particle removal, it was found that a pre-wash step was not essential. Planova filters that had been modified by sodium hydroxide treatment to make them more permeable, and filters manufactured with varying pore-sizes over the range of 15–35 nm, were tested. The integrity test value that resulted in the removal of >4 log10 of poliovirus-1 from the product correlated with that recommended by the filter manufacturer. Virus removal from the product was not influenced by filter load mass, flow-rate or pressure. These studies confirm the robustness of this filtration procedure and allow suitable process limits to be set for this manufacturing step.  相似文献   
56.
Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.  相似文献   
57.
58.
59.
The role of pelvic floor muscle contraction in the genesis of anal canal pressure is not clear. Recent studies have suggested that vaginal distension increases pelvic floor muscle contraction. We studied the effects of vaginal distension on anal canal pressure in 15 nullipara asymptomatic women. Anal pressure, rest, and squeeze were measured using station pull-through manometry techniques with no vaginal probe, a 10-mm vaginal probe, and a 25-mm vaginal probe in place. Rest and squeeze vaginal pressures were significantly higher when measured with the 25-mm probe compared with the 10-mm probe, suggesting that vaginal distension enhances pelvic floor contraction. In the presence of the 25-mm vaginal probe, rest and squeeze anal pressures in the proximal part of the anal canal were significantly higher compared with no vaginal probe or the 10-mm vaginal probe. On the other hand, distal anal pressures were not affected by any of the vaginal probes. Ultrasound imaging of the pelvic floor revealed that vaginal distension increased the anterior-posterior length of the puborectalis muscle. Atropine at 15 micro g/kg had no influence on the rest and squeeze anal pressures with or without vaginal distension. Our data suggest that pelvic floor contractions increase pressures in the proximal part of the anal canal, which is anatomically surrounded by the puborectalis muscle. We propose that pelvic floor contraction plays an important role in the fecal continence mechanism by increasing anal canal pressure.  相似文献   
60.
Dynamic and localized actions of cAMP are central to the generation of discrete cellular events in response to a range of G(s)-coupled receptor agonists. In the present study we have employed a cyclic nucleotide-gated channel sensor to report acute changes in cAMP in the restricted cellular microdomains adjacent to two different G(s)-coupled receptor pathways, beta(2)-adrenoceptors and prostanoid receptors that are expressed endogenously in HEK293 cells. We probed by either selective small interference RNA-mediated knockdown or dominant negative overexpression the contribution of key signaling components in the rapid attenuation of the local cAMP signaling and subsequent desensitization of each of these G-protein-coupled receptor signaling pathways immediately following receptor activation. Direct measurements of cAMP changes just beneath the plasma membrane of single HEK293 cells reveal novel insights into key regulatory roles provided by protein kinase A-RII, beta-arrestin2, cAMP phosphodiesterase-4D3, and cAMP phosphodiesterase-4D5. We provide new evidence for distinct modes of cAMP down-regulation in these two G(s)-linked pathways and show that these distinct G-protein-coupled receptor signaling systems are subject to unidirectional, heterologous desensitization that allows for limited cross-talk between distinct, dynamically regulated pools of cAMP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号