首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   10篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   7篇
  2012年   12篇
  2011年   18篇
  2010年   10篇
  2009年   14篇
  2008年   5篇
  2007年   8篇
  2006年   1篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1992年   1篇
  1989年   1篇
  1981年   1篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1954年   1篇
  1953年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
61.

Background and aims

Osteoporosis, which is a disease characterized by weakening of the bone, affects a large portion of the senior population. The current therapeutic options for osteoporosis have side effects, and there is no effective treatment for severe osteoporosis. Thus, we urgently need new treatment strategies, such as topical therapies and/or safe and effective stem cell therapies.

Methods

We investigated the therapeutic potential of directly injecting human tonsil-derived mesenchymal stem cells (TMSC) into the right proximal tibias of ovariectomized postmenopausal osteoporosis model mice. Injections were given once (1×) or twice (2×) during the 3-month experimental period. At the end of the experiment, micro-computed tomographic images revealed some improvement in the proximal tibias and more significant improvement in the femoral heads of treated mice.

Results

Osteogenic effect was qualitatively and quantitatively more pronounced in TMSC/2×-treated mice. Furthermore, TMSC/2×?mice exhibited significant recovery of the serum osteocalcin level, which is pathologically elevated in osteoporosis, and increased serum alkaline phosphatase, which indicates bone formation. TMSC therapy was generally well tolerated and caused no apparent toxicity in the experimental mice. Moreover, TMSC therapy reduced visceral fat.

Conclusion

Our results demonstrate that double injection of TMSC directly into the proximal tibia triggers recovery of osteoporosis, and thus could be a potential therapeutic approach for severe bone loss.  相似文献   
62.
We present the most comprehensive pan‐European assessment of future changes in cropland and grassland soil organic carbon (SOC) stocks to date, using a dedicated process‐based SOC model and state‐of‐the‐art databases of soil, climate change, land‐use change and technology change. Soil carbon change was calculated using the Rothamsted carbon model on a European 10 × 10′ grid using climate data from four global climate models implementing four Intergovernmental Panel on Climate Change (IPCC) emissions scenarios (SRES). Changes in net primary production (NPP) were calculated by the Lund–Potsdam–Jena model. Land‐use change scenarios, interpreted from the narratives of the IPCC SRES story lines, were used to project changes in cropland and grassland areas. Projections for 1990–2080 are presented for mineral soil only. Climate effects (soil temperature and moisture) will tend to speed decomposition and cause soil carbon stocks to decrease, whereas increases in carbon input because of increasing NPP will slow the loss. Technological improvement may further increase carbon inputs to the soil. Changes in cropland and grassland areas will further affect the total soil carbon stock of European croplands and grasslands. While climate change will be a key driver of change in soil carbon over the 21st Century, changes in technology and land‐use change are estimated to have very significant effects. When incorporating all factors, cropland and grassland soils show a small increase in soil carbon on a per area basis under future climate (1–7 t C ha?1 for cropland and 3–6 t C ha?1 for grassland), but when the greatly decreasing area of cropland and grassland are accounted for, total European cropland stocks decline in all scenarios, and grassland stocks decline in all but one scenario. Different trends are seen in different regions. For Europe (the EU25 plus Norway and Switzerland), the cropland SOC stock decreases from 11 Pg in 1990 by 4–6 Pg (39–54%) by 2080, and the grassland SOC stock increases from 6 Pg in 1990 to 1.5 Pg (25%) under the B1 scenario, but decreases to 1–3 Pg (20–44%) under the other scenarios. Uncertainty associated with the land‐use and technology scenarios remains unquantified, but worst‐case quantified uncertainties are 22.5% for croplands and 16% for grasslands, equivalent to potential errors of 2.5 and 1 Pg SOC, respectively. This is equivalent to 42–63% of the predicted SOC stock change for croplands and 33–100% of the predicted SOC stock change for grasslands. Implications for accounting for SOC changes under the Kyoto Protocol are discussed.  相似文献   
63.
In this paper, we use the Rothamsted Carbon Model to estimate how cropland mineral soil carbon stocks are likely to change under future climate, and how agricultural management might influence these stocks in the future. The model was run for croplands occurring on mineral soils in European Russia and the Ukraine, representing 74 Mha of cropland in Russia and 31 Mha in the Ukraine. The model used climate data (1990–2070) from the HadCM3 climate model, forced by four Intergovernmental Panel on Climate Change (IPCC) emission scenarios representing various degrees of globalization and emphasis on economic vs. environmental considerations. Three land use scenarios were examined, business as usual (BAU) management, optimal management (OPT) to maximize profit, and soil sustainability (SUS) in which profit was maximized within the constraint that soil carbon must either remain stable or increase. Our findings suggest that soil organic carbon (SOC) will be lost under all climate scenarios, but less is lost under the climate scenarios where environmental considerations are placed higher than purely economic considerations (IPCC B1 and B2 scenarios) compared with the climate associated with emissions resulting from the global free market scenario (IPCC A1FI scenario). More SOC is lost towards the end of the study period. Optimal management is able to reduce this loss of SOC, by up to 44% compared with business as usual management. The soil sustainability scenario could be run only for a limited area, but in that area was shown to increase SOC stocks under three climate scenarios, compared with a loss of SOC under business as usual management in the same area. Improved agricultural soil management will have a significant role to play in the adaptation to, and mitigation of, climate change in this region. Further, our results suggest that this adaptation could be realized without damaging profitability for the farmers, a key criteria affecting whether optimal management can be achieved in reality.  相似文献   
64.
65.
Abstract Many studies are based on the premise that, on a local scale, diversity is the result of ecological processes, whereas on a regional scale factors such as the topography, geology, hydrology, and historical and evolutionary events would influence this control. The Baturité Mountain Range (Ceará state), located in the Brazilian semi‐arid zone, is considered an area of extreme importance for conservation with its vegetation varying with the altitude and slope (windward vs. leeward). On the windward (wet) slope, rainforest dominates, whereas the leeward (dry) slope is dominated by seasonal forests and thorny woodland. The aim of this study was to contribute to the knowledge of the patterns of richness and diversity of the family Leguminosae on a local scale (Baturité Mountain Range) as well as a regional scale (northeastern Brazil). The two slopes present quite distinct floras. The dry slope presents higher richness and diversity indices for Leguminosae than the wet slope. The highest diversity of Leguminosae in the dry areas did not corroborate the ideas of other studies carried out in neotropical forests (total flora) that the higher species richness was predicted for wet areas. The present study indicates that the historical and evolutionary processes influence the diversity patterns on a local scale (Baturité Mountain Range), as well as on a regional scale (Brazilian semi‐arid). Our results reinforce the uniqueness of each portion of this area and its importance for conservation.  相似文献   
66.
Locomotion and feeding in marine animals are intimately linked to the flow dynamics created by specialized body parts. This interaction is of particular importance during ontogeny, when changes in behaviour and scale challenge the organism with shifts in fluid regimes and altered functionality. Previous studies have indicated that Scyphozoan jellyfish ontogeny accommodates the changes in fluid dynamics associated with increasing body dimensions and velocities during development. However, in addition to scale and behaviour that—to a certain degree—underlie the control of the animal, flow dynamics are also dependent on external factors such as temperature. Here, we show phenotypic plasticity in juvenile Aurelia aurita medusae, where morphogenesis is adapted to altered fluid regimes imposed by changes in ambient temperature. In particular, differential proportional growth was found to compensate for temperature-dependent changes in viscous effects, enabling the animal to use adhering water boundary layers as ‘paddles’—and thus economize tissue—at low temperatures, while switching to tissue-dominated propulsion at higher temperatures where the boundary layer thickness is insufficient to serve for paddling. This effect was predicted by a model of animal–fluid interaction and confirmed empirically by flow-field visualization and assays of propulsion efficiency.  相似文献   
67.
1. The patterns of multiple paternity among the progeny of females are key properties of genetic mating systems. Female multiple mating should evolve due to direct or indirect benefits, but it may also partly be driven by the encounter rate with different potential mates. 2. In this study this hypothesis was experimentally tested in the European earwig (Forficula auricularia L.) by establishing experimental mating groups that differed in the number of males and females (i.e. density). The number of sires and mean sibling relatedness in each clutch were estimated using microsatellite‐based paternity analysis. 3. As predicted, the mean number of sires per clutch was significantly increased, and sibling relatedness decreased, in the higher density treatment where more potential male mates were available. This change was less than proportional to the number of males in the mating groups, indicating that mechanisms limiting multiple paternity in large mating groups were involved. There were no significant relationships between female reproductive success or male siring success with morphology (body size, weight, and forceps size). 4. The present results show that multiple paternity in F. auricularia clutches is partly determined by the availability of male mates and suggest that this effect is modulated by mechanisms in males and/or females that limit multiple paternity.  相似文献   
68.
1. All else being equal, the greater the local species richness of plants, the greater the number of associated herbivore species. Because most herbivore insects feed on a subset of closely related plant species, plant phylogenetic diversity is expected to play a key role in determining the number of herbivore species. What is not well known, however, is how an increase in the species richness of exotic plants affects the species richness of herbivores. 2. In this study, we used plant–fruit fly interactions to investigate the influence of the proportion and species richness of exotic host plants on the species richness of herbivorous insects. We also tested whether the phylogenetic diversity of host plants increases when the number of exotic plant species increases. 3. We found that the species richness of fruit flies is more accurately predicted by the richness of native host plants than by total plant species richness (including both native and exotic species). The proportion of exotic host species and the phylogenetic diversity of host plants had negative and positive effects, respectively, on the species richness of fruit flies. 4. Our findings suggest that a positive effect of plant richness on herbivore richness occurs only when an increase in plant diversity involves plant species with which native herbivores share some evolutionary history.  相似文献   
69.
Lepidopteran male mating success is recognized to be directly related to physical and behavioural traits such as ability, vigour, activity and persistence in courtship. In the tomato fruit borer Neoleucinodes elegantalis Guenée, the mating system is known to be monogamic and therefore males' sexual investment is apparently low. The hypothesis that recently mated males have a remating probability equal to that of virgin males is tested. The impact of body size in remating success and the cost of remating are also analyzed. Mated males show as much propensity to remate as naïve ones. Copula duration and the time taken to copulate are similar in mated and virgin males. However, spermatophore size is not related to male size. The results suggest the ability of N. elegantalis males to remate within 24 h between mating events and their propensity to remate are not affected by copula investment. © 2013 The Royal Entomological Society  相似文献   
70.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号