首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1340篇
  免费   123篇
  2022年   7篇
  2021年   34篇
  2020年   15篇
  2019年   15篇
  2018年   26篇
  2017年   25篇
  2016年   42篇
  2015年   70篇
  2014年   76篇
  2013年   90篇
  2012年   102篇
  2011年   98篇
  2010年   69篇
  2009年   59篇
  2008年   93篇
  2007年   70篇
  2006年   66篇
  2005年   56篇
  2004年   53篇
  2003年   49篇
  2002年   47篇
  2001年   23篇
  2000年   16篇
  1999年   24篇
  1998年   4篇
  1997年   5篇
  1996年   9篇
  1995年   10篇
  1994年   8篇
  1993年   7篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   11篇
  1988年   12篇
  1987年   11篇
  1986年   10篇
  1984年   6篇
  1983年   6篇
  1982年   11篇
  1981年   12篇
  1980年   12篇
  1979年   12篇
  1978年   11篇
  1977年   5篇
  1976年   6篇
  1975年   4篇
  1974年   5篇
  1972年   5篇
  1968年   5篇
排序方式: 共有1463条查询结果,搜索用时 203 毫秒
111.
112.
Activation of the tumour suppressor protein p53 rapidly inhibits protein synthesis. This is associated with dephosphorylation and cleavage of initiation factor eIF4GI and the eIF4E-binding protein 4E-BP1. When the activation of p53 is reversed within 16 h 4E-BP1 becomes rephosphorylated, the level of intact eIF4GI slowly increases and protein synthesis gradually recovers. The recovery of protein synthesis is partially blocked by rapamycin and wortmannin but not by the protein kinase inhibitors PD98059 and CGP74514A. Both rapamycin and wortmannin, but not PD98059 or CGP74514A, delay the reappearance of eIF4GI. In contrast, full-length 4E-BP1 rapidly becomes rephosphorylated and this process is partially inhibited by rapamycin, PD98059 and CGP74514A. Thus, activation of p53 results in the inhibition of distinct rapamycin- and wortmannin-sensitive pathways that target eIF4GI, and rapamycin-sensitive and -insensitive pathways that target 4E-BP1. Following inactivation of p53 the gradual recovery is determined largely by the kinetics of restoration of eIF4GI rather than by the rephosphorylation of full-length 4E-BP1. These findings suggest that the ability of cells to rephosphorylate 4E-BP1, resynthesise eIF4GI and restore the rate of protein synthesis after inactivation of p53 is an important aspect of recovery following the relief of physiological stress.  相似文献   
113.
Kim J  Jung SC  Clemens AM  Petralia RS  Hoffman DA 《Neuron》2007,54(6):933-947
Voltage-gated A-type K+ channel Kv4.2 subunits are highly expressed in the dendrites of hippocampal CA1 neurons. However, little is known about the subcellular distribution and trafficking of Kv4.2-containing channels. Here we provide evidence for activity-dependent trafficking of Kv4.2 in hippocampal spines and dendrites. Live imaging and electrophysiological recordings showed that Kv4.2 internalization is induced rapidly upon glutamate receptor stimulation. Kv4.2 internalization was clathrin mediated and required NMDA receptor activation and Ca2+ influx. In dissociated hippocampal neurons, mEPSC amplitude depended on functional Kv4.2 expression level and was enhanced by stimuli that induced Kv4.2 internalization. Long-term potentiation (LTP) induced by brief glycine application resulted in synaptic insertion of GluR1-containing AMPA receptors along with Kv4.2 internalization. We also found evidence of Kv4.2 internalization upon synaptically evoked LTP in CA1 neurons of hippocampal slice cultures. These results present an additional mechanism for synaptic integration and plasticity through the activity-dependent regulation of Kv4.2 channel surface expression.  相似文献   
114.
Sex comb on midleg (Scm) is a member of the Polycomb group of proteins involved in the maintenance of repression of Hox and other developmental control genes in Drosophila. The two malignant brain tumour (MBT) repeats of Scm form a domain that preferentially binds to monomethylated lysine residues either as a free amino acid or in the context of peptides, while unmodified or di- or trimethylated lysine residues are bound with significantly lower affinity. The crystal structure of a monomethyl-lysine-containing histone tail peptide bound to the MBT repeat domain shows that the methyl-lysine side chain occupies a binding pocket in the second MBT repeat formed by three conserved aromatic residues and one aspartate. Insertion of the monomethylated side chain into this pocket seems to be the main contributor to the binding affinity. Functional analyses in Drosophila show that the MBT domain of Scm and its methyl-lysine-binding activity are required for repression of Hox genes.  相似文献   
115.
116.
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1f/f) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1f/f mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.  相似文献   
117.
Sepsis is a major cause for death worldwide. Numerous interventional trials with agents neutralizing single proinflammatory mediators have failed to improve survival in sepsis and aseptic systemic inflammatory response syndromes. This failure could be explained by the widespread gene expression dysregulation known as “genomic storm” in these patients. A multifunctional polyspecific therapeutic agent might be needed to thwart the effects of this storm. Licensed pooled intravenous immunoglobulin preparations seemed to be a promising candidate, but they have also failed in their present form to prevent sepsis-related death. We report here the protective effect of a single dose of intravenous immunoglobulin preparations with additionally enhanced polyspecificity in three models of sepsis and aseptic systemic inflammation. The modification of the pooled immunoglobulin G molecules by exposure to ferrous ions resulted in their newly acquired ability to bind some proinflammatory molecules, complement components and endogenous “danger” signals. The improved survival in endotoxemia was associated with serum levels of proinflammatory cytokines, diminished complement consumption and normalization of the coagulation time. We suggest that intravenous immunoglobulin preparations with additionally enhanced polyspecificity have a clinical potential in sepsis and related systemic inflammatory syndromes.  相似文献   
118.
The present study reviews the options of cultivating the green alga, Chlorella emersonii, under photoautotrophic conditions with flue gas derived from a cement plant. It was conducted in the Lafarge Perlmooser plant in Retznei, Austria, where stone coal and various surrogate fuels such as used tyres, plastics and meat-and-bone meal are incinerated for heating limestone. During 30 days of cultivation, flue gas had no visible adverse effects compared to the controls grown with pure CO2. The semi-continuous cultivation with media recycling was performed in 5.5-L pH-stat photobioreactors. The essay using CO2 from flue gas yielded a total of 2.00 g L−1 microalgal dry mass and a CO2 fixation of 3.25 g L−1. In the control, a total of 2.06 g L−1 dry mass was produced and 3.38 g L−1 CO2 was fixed. Mean growth rates were between 0.10 day−1 (control) and 0.13 day−1 (flue gas). No accumulation of flue gas residues was detected in the culture medium. At the end of the experiment, however, the concentration of lead was three times higher in algal biomass compared to the control, indicating that cultures aerated with this type of flue gas should not be used as food supplements or animal feed.  相似文献   
119.
Treatment of diseases such as African sleeping sickness and leishmaniasis often depends on relatively expensive or toxic drugs, and resistance to current chemotherapeutics is an issue in treating these diseases and malaria. In this study, a new semi-synthetic berberine analogue, 5,6-didehydro-8,8-diethyl-13-oxodihydroberberine chloride (1), showed nanomolar level potency against in vitro models of leishmaniasis, malaria, and trypanosomiasis as well as activity in an in vivo visceral leishmaniasis model. Since the synthetic starting material, berberine hemisulfate, is inexpensive, 8,8-dialkyl-substituted analogues of berberine may lead to a new class of affordable antiprotozoal compounds.  相似文献   
120.
Obligate intracellular Apicomplexa parasites share a unique invasion mechanism involving a tight interaction between the host cell and the parasite surfaces called the moving junction (MJ). The MJ, which is the anchoring structure for the invasion process, is formed by secretion of a macromolecular complex (RON2/4/5/8), derived from secretory organelles called rhoptries, into the host cell membrane. AMA1, a protein secreted from micronemes and associated with the parasite surface during invasion, has been shown in vitro to bind the MJ complex through a direct association with RON2. Here we show that RON2 is inserted as an integral membrane protein in the host cell and, using several interaction assays with native or recombinant proteins, we define the region that binds AMA1. Our studies were performed both in Toxoplasma gondii and Plasmodium falciparum and although AMA1 and RON2 proteins have diverged between Apicomplexa species, we show an intra-species conservation of their interaction. More importantly, invasion inhibition assays using recombinant proteins demonstrate that the RON2-AMA1 interaction is crucial for both T. gondii and P. falciparum entry into their host cells. This work provides the first evidence that AMA1 uses the rhoptry neck protein RON2 as a receptor to promote invasion by Apicomplexa parasites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号