首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7436篇
  免费   976篇
  国内免费   1篇
  2021年   93篇
  2019年   65篇
  2018年   80篇
  2017年   76篇
  2016年   111篇
  2015年   186篇
  2014年   202篇
  2013年   272篇
  2012年   322篇
  2011年   327篇
  2010年   238篇
  2009年   179篇
  2008年   315篇
  2007年   265篇
  2006年   275篇
  2005年   225篇
  2004年   252篇
  2003年   250篇
  2002年   221篇
  2001年   219篇
  2000年   207篇
  1999年   179篇
  1998年   122篇
  1997年   102篇
  1996年   104篇
  1995年   101篇
  1994年   92篇
  1993年   90篇
  1992年   142篇
  1991年   182篇
  1990年   196篇
  1989年   139篇
  1988年   149篇
  1987年   153篇
  1986年   143篇
  1985年   133篇
  1984年   117篇
  1983年   104篇
  1982年   95篇
  1981年   100篇
  1980年   98篇
  1979年   111篇
  1978年   102篇
  1977年   87篇
  1976年   72篇
  1975年   69篇
  1974年   96篇
  1973年   95篇
  1972年   82篇
  1971年   79篇
排序方式: 共有8413条查询结果,搜索用时 15 毫秒
921.
The synthesis and antibacterial activity of a series of nocathiacin I derivatives (4-20) containing polar water solubilizing groups is described. Thiol-Michael adducts containing acidic polar groups have reduced antibacterial activity whereas those with basic polar groups have retained very good antibacterial activity.  相似文献   
922.
A novel series of competitive, reversible cathepsin S (CatS) inhibitors was discovered and optimized. The 4-(2-keto-1-benzimidazolinyl)-piperidin-1-yl moiety was found to be an effective replacement for the 4-arylpiperazin-1-yl group found in our earlier series of CatS inhibitors. This replacement imparted improved PK properties as well as decreased off-target activity. Optimization of the ketobenzimidazole moiety led to the discovery of the lead compound JNJ 10329670, which represents a novel class of selective, noncovalent, reversible, and orally bioavailable inhibitors of cathepsin S.  相似文献   
923.
Two-chain aggregation simulations using minimalist models of proteins G, L, and mutants were used to investigate the fundamentals of protein aggregation. Mutations were selected to break up repeats of hydrophobic beads in the sequence while maintaining native topology and folding ability. Data are collected under conditions in which all chain types have similar folded populations and after equilibrating the separated chains to minimize competition between folding and aggregation. Folding cooperativity stands out as the best single-chain determinant under these conditions and for these simple models. It can be experimentally measured by the width of the unfolding transition during thermal denaturation and loosely related to population of intermediate-like states during folding. Additional measures of cooperativity and other properties such as radius of gyration fluctuations and patterning of hydrophobic residues are also examined. Initial contact system states with transition-state characteristics can be identified and are more expanded than average initial contact states. Two-chain minimalist model aggregates are considerably less structured than their native states and have minimal domain-swapping features.  相似文献   
924.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   
925.
Elevated intraocular pressure is an important risk factor for the development of glaucoma, a leading cause of irreversible blindness. This ocular hypertension is due to increased hydrodynamic resistance to the drainage of aqueous humor through specialized outflow tissues, including the trabecular meshwork (TM) and the endothelial lining of Schlemm's canal. We know that glucocorticoid therapy can cause increased outflow resistance and glaucoma in susceptible individuals, that the cytoskeleton helps regulate aqueous outflow resistance, and that glucocorticoid treatment alters the actin cytoskeleton of cultured TM cells. Our purpose was to characterize the actin cytoskeleton of cells in outflow pathway tissues in situ, to characterize changes in the cytoskeleton due to dexamethasone treatment in situ, and to compare these with changes observed in cell culture. Human ocular anterior segments were perfused with or without 10(-7) M dexamethasone, and F-actin architecture was investigated by confocal laser scanning microscopy. We found that outflow pathway cells contained stress fibers, peripheral actin staining, and occasional actin "tangles." Dexamethasone treatment caused elevated IOP in several eyes and increased overall actin staining, with more actin tangles and the formation of cross-linked actin networks (CLANs). The actin architecture in TM tissues was remarkably similar to that seen in cultured TM cells. Although CLANs have been reported previously in cultured cells, this is the first report of CLANs in tissue. These cytoskeletal changes may be associated with increased aqueous humor outflow resistance after ocular glucocorticoid treatment.  相似文献   
926.
The success of hepatocellular therapies using stem or progenitor cell populations is dependent upon multiple factors including the donor cell, microenvironment, and etiology of the liver injury. The following experiments investigated the impact of TGF-beta1 on a previously described population of hepatic progenitor cells (HPC). The majority of the hepatic progenitor cells were resistant to endogenously produced TGF-beta1's proapoptotic and anti-proliferative effects unlike more well-differentiated cellular populations (e.g., mature hepatocytes). Surprisingly, in vitro TGF-beta1 supplementation significantly inhibited de novo hepatic progenitor cell colony formation possibly via an indirect mechanism(s). Therefore despite the HPC's direct resistance to supplemental TGF-beta1, this cytokine's inhibitory effect on colony formation could have a potential negative impact on the use of these cells as a therapy for patients with liver disease.  相似文献   
927.
Transposons are one means that nature has used to introduce new genetic material into chromosomes of organisms from every kingdom. They have been extensively used in prokaryotic and lower eukaryotic systems, but until recently there was no transposon that had significant activity in vertebrates. The Sleeping Beauty (SB) transposon system was developed to direct the integration of precise DNA sequences into chromosomes. The SB system was derived from salmonid sequences that had been inactive for more than 10 million years. SB transposons have been used for two principle uses – as a vector for transgenesis and as a method for introducing various trap vectors into (gene-trap) or in the neighborhood of (enhancer-trap) genes to identify their functions. Results of these studies show that SB-mediated transgenesis is more efficient than that by injection of simple plasmids and that expression of transgenesis is stable and reliable following passage through the germline.  相似文献   
928.
Patients with systemic autoimmune diseases usually produce high levels of antibodies to self-antigens (autoantigens). The repertoire of common autoantigens is remarkably limited, yet no readily understandable shared thread links these apparently diverse proteins. Using computer prediction algorithms, we have found that most nuclear systemic autoantigens are predicted to contain long regions of extreme structural disorder. Such disordered regions would generally make poor B cell epitopes and are predicted to be under-represented as potential T cell epitopes. Consideration of the potential role of protein disorder may give novel insights into the possible role of molecular mimicry in the pathogenesis of autoimmunity. The recognition of extreme autoantigen protein disorder has led us to an explicit model of epitope spreading that explains many of the paradoxical aspects of autoimmunity – in particular, the difficulty in identifying autoantigen-specific helper T cells that might collaborate with the B cells activated in systemic autoimmunity. The model also explains the experimentally observed breakdown of major histocompatibility complex (MHC) class specificity in peptides associated with the MHC II proteins of activated autoimmune B cells, and sheds light on the selection of particular T cell epitopes in autoimmunity. Finally, the model helps to rationalize the relative rarity of clinically significant autoimmunity despite the prevalence of low specificity/low avidity autoantibodies in normal individuals.  相似文献   
929.
930.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号