首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61391篇
  免费   18131篇
  国内免费   3479篇
  2024年   52篇
  2023年   443篇
  2022年   626篇
  2021年   2093篇
  2020年   3280篇
  2019年   5038篇
  2018年   5012篇
  2017年   4962篇
  2016年   5415篇
  2015年   6076篇
  2014年   6143篇
  2013年   6710篇
  2012年   5092篇
  2011年   4493篇
  2010年   4816篇
  2009年   3487篇
  2008年   2741篇
  2007年   2113篇
  2006年   1912篇
  2005年   1832篇
  2004年   1600篇
  2003年   1554篇
  2002年   1387篇
  2001年   1073篇
  2000年   863篇
  1999年   762篇
  1998年   337篇
  1997年   332篇
  1996年   292篇
  1995年   244篇
  1994年   253篇
  1993年   172篇
  1992年   231篇
  1991年   198篇
  1990年   172篇
  1989年   150篇
  1988年   135篇
  1987年   109篇
  1986年   101篇
  1985年   113篇
  1984年   76篇
  1983年   52篇
  1982年   55篇
  1981年   31篇
  1979年   39篇
  1978年   30篇
  1977年   36篇
  1976年   33篇
  1973年   30篇
  1971年   27篇
排序方式: 共有10000条查询结果,搜索用时 28 毫秒
991.
Methane emissions from peat bogs are mitigated by methanotrophs, which live in symbiosis with peat moss (e.g. Sphagnum). Here, we investigate the influence of temperature and resultant changes in methane fluxes on Sphagnum and methanotroph‐related biomarkers, evaluating their potential as proxies in ancient bogs. A pulse‐chase experiment using 13C‐labelled methane in the field clearly showed label uptake in diploptene, a biomarker for methanotrophs, demonstrating in situ methanotrophic activity in Sphagnum under natural conditions. Peat cores containing live Sphagnum were incubated at 5, 10, 15, 20 and 25°C for two months, causing differences in net methane fluxes. The natural δ13C values of diploptene extracted from Sphagnum showed a strong correlation with temperature and methane production. The δ13C values ranged from ?34‰ at 5°C to ?41‰ at 25°C. These results are best explained by enhanced expression of the methanotrophic enzymatic isotope effect at higher methane concentrations. Hence, δ13C values of diploptene, or its diagenetic products, potentially provide a useful tool to assess methanotrophic activity in past environments. Increased methane fluxes towards Sphagnum did not affect δ13C values of bulk Sphagnum and its specific marker, the C23 n‐alkane. The concentration of methanotroph‐specific bacteriohopanepolyols (BHPs), aminobacteriohopanetetrol (aminotetrol, characteristic for type II and to a lesser extent type I methanotrophs) and aminobacteriohopanepentol (aminopentol, a marker for type I methanotrophs) showed a non‐linear response to increased methane fluxes, with relatively high abundances at 25°C compared to those at 20°C or below. Aminotetrol was more abundant than aminopentol, in contrast to similar abundances of aminotetrol and aminopentol in fresh Sphagnum. This probably indicates that type II methanotrophs became prevalent under the experimental conditions relative to type I methanotrophs. Even though BHP concentrations may not directly reflect bacterial activity, they may provide insight into the presence of different types of methanotrophs.  相似文献   
992.
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III).  相似文献   
993.
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.  相似文献   
994.
995.
The Atacama Desert is the driest non‐polar desert on Earth, presenting precarious conditions for biological activity. In the arid coastal belt, life is restricted to areas with fog events that cause almost daily wet–dry cycles. In such an area, we discovered a hitherto unknown and unique ground covering biocenosis dominated by lichens, fungi, and algae attached to grit‐sized (~6 mm) quartz and granitoid stones. Comparable biocenosis forming a kind of a layer on top of soil and rock surfaces in general is summarized as cryptogamic ground covers (CGC) in literature. In contrast to known CGC from arid environments to which frequent cyclic wetting events are lethal, in the Atacama Desert every fog event is answered by photosynthetic activity of the soil community and thus considered as the desert's breath. Photosynthesis of the new CGC type is activated by the lowest amount of water known for such a community worldwide thus enabling the unique biocenosis to fulfill a variety of ecosystem services. In a considerable portion of the coastal Atacama Desert, it protects the soil from sporadically occurring splash erosion and contributes to the accumulation of soil carbon and nitrogen as well as soil formation through bio‐weathering. The structure and function of the new CGC type are discussed, and we suggest the name grit–crust. We conclude that this type of CGC can be expected in all non‐polar fog deserts of the world and may resemble the cryptogam communities that shaped ancient Earth. It may thus represent a relevant player in current and ancient biogeochemical cycling.  相似文献   
996.
997.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   
998.
Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well‐defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4‐fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e?8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11–31 years old, and a greater than 90% reduction is observed from the ages of 34–54 years. Based on recent investigations linking tryptophan with abundance of indole and other “healthy” longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively “young” age of 34 and, particularly, in the elderly are recommended.  相似文献   
999.
Cellular senescence is a stress response that limits the proliferation of damaged cells by establishing a permanent cell cycle arrest. Different stimuli can trigger senescence but excessive production or impaired clearance of these cells can lead to their accumulation during aging with deleterious effects. Despite this potential negative side of cell senescence, its physiological role as a pro‐regenerative and morphogenetic force has emerged recently after the identification of programmed cell senescence during embryogenesis and during wound healing and limb regeneration. Here, we explored the conservation of tissue injury‐induced senescence in a model of complex regeneration, the zebrafish. Fin amputation in adult fish led to the appearance of senescent cells at the site of damage, and their removal impaired tissue regeneration. Despite many conceptual similarities, this tissue repair response is different from developmental senescence. Our results lend support to the notion that cell senescence is a positive response promoting tissue repair and homeostasis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号