首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25967篇
  免费   2394篇
  国内免费   9篇
  2023年   115篇
  2022年   87篇
  2021年   618篇
  2020年   377篇
  2019年   446篇
  2018年   510篇
  2017年   470篇
  2016年   776篇
  2015年   1266篇
  2014年   1435篇
  2013年   1654篇
  2012年   2186篇
  2011年   2209篇
  2010年   1414篇
  2009年   1143篇
  2008年   1762篇
  2007年   1629篇
  2006年   1479篇
  2005年   1474篇
  2004年   1468篇
  2003年   1255篇
  2002年   1107篇
  2001年   256篇
  2000年   191篇
  1999年   236篇
  1998年   253篇
  1997年   172篇
  1996年   171篇
  1995年   139篇
  1994年   168篇
  1993年   142篇
  1992年   133篇
  1991年   107篇
  1990年   86篇
  1989年   84篇
  1988年   87篇
  1987年   92篇
  1986年   78篇
  1985年   80篇
  1984年   87篇
  1983年   96篇
  1982年   92篇
  1981年   77篇
  1980年   76篇
  1979年   55篇
  1978年   57篇
  1977年   45篇
  1976年   54篇
  1975年   37篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
Vertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated by Aeromonas and, to a lesser extent, Citrobacter and Shewanella. Phylogenetic analysis of the culturable Aeromonas from both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment of Aeromonas that accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.  相似文献   
13.
Although it has been known for nearly a century that strains of Trypanosoma cruzi, the etiological agent for Chagas'' disease, are enzootic in the southern U.S., much remains unknown about the dynamics of its transmission in the sylvatic cycles that maintain it, including the relative importance of different transmission routes. Mathematical models can fill in gaps where field and lab data are difficult to collect, but they need as inputs the values of certain key demographic and epidemiological quantities which parametrize the models. In particular, they determine whether saturation occurs in the contact processes that communicate the infection between the two populations. Concentrating on raccoons, opossums, and woodrats as hosts in Texas and the southeastern U.S., and the vectors Triatoma sanguisuga and Triatoma gerstaeckeri, we use an exhaustive literature review to derive estimates for fundamental parameters, and use simple mathematical models to illustrate a method for estimating infection rates indirectly based on prevalence data. Results are used to draw conclusions about saturation and which population density drives each of the two contact-based infection processes (stercorarian/bloodborne and oral). Analysis suggests that the vector feeding process associated with stercorarian transmission to hosts and bloodborne transmission to vectors is limited by the population density of vectors when dealing with woodrats, but by that of hosts when dealing with raccoons and opossums, while the predation of hosts on vectors which drives oral transmission to hosts is limited by the population density of hosts. Confidence in these conclusions is limited by a severe paucity of data underlying associated parameter estimates, but the approaches developed here can also be applied to the study of other vector-borne infections.  相似文献   
14.
Aggression between species is a seldom-considered but potentially widespread mechanism of character displacement in secondary sexual characters. Based on previous research showing that similarity in wing coloration directly influences interspecific territorial aggression in Hetaerina damselflies, we predicted that wing coloration would show a pattern of character displacement (divergence in sympatry). A geographical survey of four Hetaerina damselfly species in Mexico and Texas showed evidence for character displacement in both species pairs that regularly occurs sympatrically. Hetaerina titia, a species that typically has large black wing spots and small red wing spots, shifted to having even larger black spots and smaller red wing spots at sites where a congener with large red wing spots is numerically dominant (Hetaerina americana or Hetaerina occisa). Hetaerina americana showed the reverse pattern, shifting towards larger red wing spots where H. titia is numerically dominant. This pattern is consistent with the process of agonistic character displacement, but the ontogenetic basis of the shift remains to be demonstrated.  相似文献   
15.
Retrograde transport is a critical mechanism for recycling certain membrane cargo. Following endocytosis from the plasma membrane, retrograde cargo is moved from early endosomes to Golgi followed by transport (recycling) back to the plasma membrane. The complete molecular and cellular mechanisms of retrograde transport remain unclear. The small GTPase RAB-6.2 mediates the retrograde recycling of the AMPA-type glutamate receptor (AMPAR) subunit GLR-1 in C. elegans neurons. Here we show that RAB-6.2 and a close paralog, RAB-6.1, together regulate retrograde transport in both neurons and non-neuronal tissue. Mutants for rab-6.1 or rab-6.2 fail to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. Loss of both rab-6.1 and rab-6.2 results in an additive effect on GLR-1 retrograde recycling, indicating that these two C. elegans Rab6 isoforms have overlapping functions. MIG-14 (Wntless) protein, which undergoes retrograde recycling, undergoes a similar degradation in intestinal epithelia in both rab-6.1 and rab-6.2 mutants, suggesting a broader role for these proteins in retrograde transport. Surprisingly, MIG-14 is localized to separate, spatially segregated endosomal compartments in rab-6.1 mutants compared to rab-6.2 mutants. Our results indicate that RAB-6.1 and RAB-6.2 have partially redundant functions in overall retrograde transport, but also have their own unique cellular- and subcellular functions.  相似文献   
16.
17.
18.
Attempts to predict the response of species to long-term environmental change are generally based on extrapolations from laboratory experiments that inevitably simplify the complex interacting effects that occur in the field. We recorded heart rates of two genetic lineages of the brown mussel Perna perna over a full tidal cycle in-situ at two different sites in order to evaluate the cardiac responses of the two genetic lineages present on the South African coast to temperature and the immersion/emersion cycle. “Robomussel” temperature loggers were used to monitor thermal conditions at the two sites over one year. Comparison with live animals showed that robomussels provided a good estimate of mussel body temperatures. A significant difference in estimated body temperatures was observed between the sites and the results showed that, under natural conditions, temperatures regularly approach or exceed the thermal limits of P. perna identified in the laboratory. The two P. perna lineages showed similar tidal and diel patterns of heart rate, with higher cardiac activity during daytime immersion and minimal values during daytime emersion. Comparison of the heart rates measured in the field with data previously measured in the laboratory indicates that laboratory results seriously underestimate heart rate activity, by as much as 75%, especially during immersion. Unexpectedly, field estimates of body temperatures indicated an ability to tolerate temperatures considered lethal on the basis of laboratory measurements. This suggests that the interaction of abiotic conditions in the field does not necessarily raise vulnerability to high temperatures.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号