首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12672篇
  免费   1049篇
  国内免费   2篇
  2023年   55篇
  2021年   148篇
  2020年   120篇
  2019年   137篇
  2018年   240篇
  2017年   206篇
  2016年   358篇
  2015年   607篇
  2014年   672篇
  2013年   741篇
  2012年   981篇
  2011年   946篇
  2010年   604篇
  2009年   464篇
  2008年   689篇
  2007年   655篇
  2006年   597篇
  2005年   572篇
  2004年   586篇
  2003年   510篇
  2002年   478篇
  2001年   246篇
  2000年   299篇
  1999年   230篇
  1998年   149篇
  1997年   88篇
  1996年   89篇
  1995年   92篇
  1994年   82篇
  1993年   73篇
  1992年   147篇
  1991年   137篇
  1990年   129篇
  1989年   87篇
  1988年   122篇
  1987年   90篇
  1986年   83篇
  1985年   91篇
  1984年   84篇
  1983年   69篇
  1982年   65篇
  1981年   56篇
  1980年   47篇
  1979年   72篇
  1978年   47篇
  1977年   58篇
  1975年   50篇
  1974年   44篇
  1973年   47篇
  1971年   44篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
991.
992.
The analysis of metabolic intermediates is a rich source of isotopic information for 13C metabolic flux analysis (13C-MFA) and extends the range of its applications. The sampling of labeled metabolic intermediates is particularly important to obtain reliable isotopic information. The assessment of the different sampling procedures commonly used to generate such data, therefore, is crucial. In this work, we thoroughly evaluated several sampling procedures for stationary and non-stationary 13C-MFA using Escherichia coli. We first analyzed the efficiency of these procedures for quenching metabolism and found that procedures based on cold or boiling solvents are reliable, in contrast to fast filtration, which is not. We also showed that separating the cells from the broth is not necessary in isotopic stationary state conditions. On the other hand, we demonstrated that the presence of metabolic intermediates outside the cells strongly affects the transient isotopic data monitored during non-stationary 13C-labeling experiments. Meaningful isotopic data can be obtained by recovering intracellular labeled metabolites from pellets of cells centrifuged in cold solvent. We showed that if the intracellular pools are not separated from the extracellular ones, accurate flux maps can be established provided that the contribution of exogenous compounds is taken into account in the metabolic flux model.  相似文献   
993.
Bacteria that have adapted to nutrient‐rich, stable environments are typically characterized by reduced genomes. The loss of biosynthetic genes frequently renders these lineages auxotroph, hinging their survival on an environmental uptake of certain metabolites. The evolutionary forces that drive this genome degradation, however, remain elusive. Our analysis of 949 metabolic networks revealed auxotrophies are likely highly prevalent in both symbiotic and free‐living bacteria. To unravel whether selective advantages can account for the rampant loss of anabolic genes, we systematically determined the fitness consequences that result from deleting conditionally essential biosynthetic genes from the genomes of Escherichia coli and Acinetobacter baylyi in the presence of the focal nutrient. Pairwise competition experiments with each of 20 mutants auxotrophic for different amino acids, vitamins, and nucleobases against the prototrophic wild type unveiled a pronounced, concentration‐dependent growth advantage of around 13% for virtually all mutants tested. Individually deleting different genes from the same biosynthesis pathway entailed gene‐specific fitness consequences and loss of the same biosynthetic genes from the genomes of E. coli and A. baylyi differentially affected the fitness of the resulting auxotrophic mutants. Taken together, our findings suggest adaptive benefits could drive the loss of conditionally essential biosynthetic genes.  相似文献   
994.
Six Arcanobacterium haemolyticum strains isolated from six patients of two hospitals in Denmark were identified phenotypically, also including matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, and by genotypic methods. The latter were performed by sequencing 16S rDNA and glyceraldehyde 3-phosphate dehydrogenase encoding gene gap and by amplification of an A. haemolyticum specific region of 16S–23S rDNA intergenic spacer region and 23S rDNA. The six A. haemolyticum strains were further investigated for the presence of seven potential virulence genes encoding arcanolysin, phospholipase D, hemolysin A, CAMP factor family protein, collagen binding protein, neuraminidase A and neuraminidase H which appeared to be present in two (seven virulence genes), two (six virulence genes) and two strains (four virulence genes), respectively. The phenotypic and genotypic properties described in the present study might help to reliably identify and further characterize A. haemolyticum isolated from human patients, a species which seems to be of increasing importance.  相似文献   
995.
The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron–electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4′ of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis.  相似文献   
996.
Collective migration of mechanically coupled cell layers is a notable feature of wound healing, embryonic development, and cancer progression. In confluent epithelial sheets, the dynamics have been found to be highly heterogeneous, exhibiting spontaneous formation of swirls, long-range correlations, and glass-like dynamic arrest as a function of cell density. In contrast, the flow-like properties of one-sided cell-sheet expansion in confining geometries are not well understood. Here, we studied the short- and long-term flow of Madin-Darby canine kidney (MDCK) cells as they moved through microchannels. Using single-cell tracking and particle image velocimetry (PIV), we found that a defined averaged stationary cell current emerged that exhibited a velocity gradient in the direction of migration and a plug-flow-like profile across the advancing sheet. The observed flow velocity can be decomposed into a constant term of directed cell migration and a diffusion-like contribution that increases with density gradient. The diffusive component is consistent with the cell-density profile and front propagation speed predicted by the Fisher-Kolmogorov equation. To connect diffusion-mediated transport to underlying cellular motility, we studied single-cell trajectories and occurrence of vorticity. We discovered that the directed large-scale cell flow altered fluctuations in cellular motion at short length scales: vorticity maps showed a reduced frequency of swirl formation in channel flow compared with resting sheets of equal cell density. Furthermore, under flow, single-cell trajectories showed persistent long-range, random-walk behavior superimposed on drift, whereas cells in resting tissue did not show significant displacements with respect to neighboring cells. Our work thus suggests that active cell migration manifests itself in an underlying, spatially uniform drift as well as in randomized bursts of short-range correlated motion that lead to a diffusion-mediated transport.  相似文献   
997.
We have performed scanning x-ray nanobeam diffraction experiments on single cells of the amoeba Dictyostelium discoideum. Cells have been investigated in 1), freeze-dried, 2), frozen-hydrated (vitrified), and 3), initially alive states. The spatially resolved small-angle x-ray scattering signal shows characteristic streaklike patterns in reciprocal space, which we attribute to fiber bundles of the actomyosin network. From the intensity distributions, an anisotropy parameter can be derived that indicates pronounced local variations within the cell. In addition to nanobeam small-angle x-ray scattering, we have evaluated the x-ray differential phase contrast in view of the projected electron density. Different experimental aspects of the x-ray experiment, sample preparation, and data analysis are discussed. Finally, the x-ray results are correlated with optical microscopy (differential phase contrast and confocal microscopy of mutant strains with fluorescently labeled actin and myosin II), which have been carried out in live and fixed states, including optical microscopy under cryogenic conditions.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号