首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19880篇
  免费   1647篇
  国内免费   5篇
  2023年   77篇
  2022年   118篇
  2021年   431篇
  2020年   233篇
  2019年   306篇
  2018年   423篇
  2017年   353篇
  2016年   636篇
  2015年   1030篇
  2014年   1169篇
  2013年   1409篇
  2012年   1747篇
  2011年   1649篇
  2010年   1062篇
  2009年   936篇
  2008年   1264篇
  2007年   1291篇
  2006年   1105篇
  2005年   1060篇
  2004年   1034篇
  2003年   937篇
  2002年   891篇
  2001年   203篇
  2000年   144篇
  1999年   153篇
  1998年   233篇
  1997年   149篇
  1996年   136篇
  1995年   125篇
  1994年   112篇
  1993年   101篇
  1992年   80篇
  1991年   64篇
  1990年   67篇
  1989年   60篇
  1988年   50篇
  1987年   55篇
  1986年   43篇
  1985年   46篇
  1984年   43篇
  1983年   62篇
  1982年   37篇
  1981年   32篇
  1980年   36篇
  1979年   28篇
  1978年   42篇
  1977年   35篇
  1976年   32篇
  1975年   25篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
922.
923.
Flavivirus membrane fusion is triggered by acidic pH and mediated by the major envelope protein E. A structurally very similar fusion protein is found in alphaviruses, and these molecules are designated class II viral fusion proteins. In contrast to that of flaviviruses, however, alphavirus fusion has been shown to be absolutely dependent on the presence of cholesterol and sphingomyelin in the target membrane, suggesting significant differences in the fusion protein-membrane interactions that lead to fusion. With the flavivirus tick-borne encephalitis virus (TBEV), we have therefore conducted a study on the lipid requirements of viral fusion with liposomes and on the processes preceding fusion, specifically, the membrane-binding step and the fusion-associated oligomeric switch from E protein dimers to trimers. As with alphaviruses, cholesterol had a strong promoting effect on membrane binding and trimerization of the fusion protein, and-as shown by the use of cholesterol analogs-the underlying interactions involve the 3beta-hydroxyl group at C-3 in both viral systems. In contrast to alphaviruses, however, these effects are much less pronounced with respect to the overall fusion of TBEV and can only be demonstrated when fusion is slowed down by lowering the temperature. The data presented thus suggest the existence of structurally related interactions of the flavivirus and alphavirus fusion proteins with cholesterol in the molecular processes required for fusion but, at the same time, point to significant differences between the class II fusion machineries of these viruses.  相似文献   
924.
The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 x 10(-7)). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.  相似文献   
925.
926.
The capsid protein, C, of tick-borne encephalitis virus has recently been found to tolerate deletions up to a length of 16 amino acid residues that partially removed the central hydrophobic domain, a sequence element conserved among flaviviruses which may be crucial for virion assembly. In this study, mutants with deletion lengths of 19, 21, 27, or 30 residues, removing more or all of this hydrophobic domain, were found to yield viable virus progeny, but this was without exception accompanied by the emergence of additional mutations within protein C. These point mutations or sequence duplications were located downstream of the engineered deletion and generally increased the hydrophobicity, suggesting that they may compensate for the loss of the central hydrophobic domain. Two of the second-site mutations, together with the corresponding deletion, were introduced into a wild-type genetic backbone, and the analysis of these "double mutants" provided direct evidence that the viability of the deletion mutant indeed depended on the presence of the second-site mutation. Our results corroborate the notion that hydrophobic interactions of protein C are essential for the assembly of infectious flavivirus particles but rule out the possibility that individual residues of the central hydrophobic domain are absolutely required for infectivity. Furthermore, the double mutants were found to be highly attenuated and capable of inducing a protective immune response in mice at even lower inoculation doses than the previously characterized 16-amino-acid-residue deletion mutant, suggesting that the combination of large deletions and second-site mutations may be a superior way to generate safe, attenuated flavivirus vaccine strains.  相似文献   
927.
Interleukin-6 (IL-6) activates cells by binding to the membrane-bound IL-6 receptor (IL-6R) and subsequent formation of a glycoprotein 130 homodimer. Cells that express glycoprotein 130, but not the IL-6R, can be activated by IL-6 and the soluble IL-6R which is generated by shedding from the cell surface or by alternative splicing. Here we show that cholesterol depletion of cells with methyl-beta-cyclodextrin increases IL-6R shedding independent of protein kinase C activation and thus differs from phorbol ester-induced shedding. Contrary to cholesterol depletion, cholesterol enrichment did not increase IL-6R shedding. Shedding of the IL-6R because of cholesterol depletion is highly dependent on the metalloproteinase ADAM17 (tumor necrosis factor-alpha-converting enzyme), and the related ADAM10, which is identified here for the first time as an enzyme involved in constitutive and induced shedding of the human IL-6R. When combined with protein kinase C inhibition by staurosporine or rottlerin, breakdown of plasma membrane sphingomyelin or enrichment of the plasma membrane with ceramide also increased IL-6R shedding. The effect of cholesterol depletion was confirmed in human THP-1 and Hep3B cells and in primary human peripheral blood monocytes, which naturally express the IL-6R. For decades, high cholesterol levels have been considered harmful. This study indicates that low cholesterol levels may play a role in shedding of the membrane-bound IL-6R and thereby in the immunopathogenesis of human diseases.  相似文献   
928.
Modulation of the cytoskeletal architecture was shown to regulate the expression of CTGF (connective tissue growth factor, CCN2). The microtubule disrupting agents nocodazole and colchicine strongly up-regulated CTGF expression, which was prevented upon stabilization of the microtubules by paclitaxel. As a consequence of microtubule disruption, RhoA was activated and the actin stress fibers were stabilized. Both effects were related to CTGF induction. Overexpression of constitutively active RhoA induced CTGF synthesis. Interference with RhoA signaling by simvastatin, toxinB, C3 toxin, and Y27632 prevented up-regulation of CTGF. Likewise, direct disintegration of the actin cytoskeleton by latrunculin B interfered with nocodazole-mediated up-regulation of CTGF expression. Disassembly of actin fibers by cytochalasin D, however, unexpectedly increased CTGF expression indicating that the content of F-actin per se was not the major determinant for CTGF gene expression. Given the fact that cytochalasin D sequesters G-actin, a decrease in G-actin increased CTGF, while increased levels of G-actin corresponded to reduced CTGF expression. These data link alterations in the microtubule and actin cytoskeleton to the expression of CTGF and provide a molecular basis for the observation that CTGF is up-regulated in cells exposed to mechanical stress.  相似文献   
929.
The Photosystem I (PS I) reaction center contains two branches of nearly symmetric cofactors bound to the PsaA and PsaB heterodimer. From the x-ray crystal structure it is known that Trp697PsaA and Trp677PsaB are pi-stacked with the head group of the phylloquinones and are H-bonded to Ser692PsaA and Ser672PsaB, whereas Arg694PsaA and Arg674PsaB are involved in a H-bonded network of side groups that connects the binding environments of the phylloquinones and FX. The mutants W697FPsaA, W677FPsaB, S692CPsaA, S672CPsaB, R694APsaA, and R674APsaB were constructed and characterized. All mutants grew photoautotrophically, yet all showed diminished growth rates compared with the wild-type, especially at higher light intensities. EPR and electron nuclear double resonance (ENDOR) studies at both room temperature and in frozen solution showed that the PsaB mutants were virtually identical to the wild-type, whereas significant effects were observed in the PsaA mutants. Spin polarized transient EPR spectra of the P700+A1- radical pair show that none of the mutations causes a significant change in the orientation of the measured phylloquinone. Pulsed ENDOR spectra reveal that the W697FPsaA mutation leads to about a 5% increase in the hyperfine coupling of the methyl group on the phylloquinone ring, whereas the S692CPsaA mutation causes a similar decrease in this coupling. The changes in the methyl hyperfine coupling are also reflected in the transient EPR spectra of P700+A1- and the CW EPR spectra of photoaccumulated A1-. We conclude that: (i) the transient EPR spectra at room temperature are predominantly from radical pairs in the PsaA branch of cofactors; (ii) at low temperature the electron cycle involving P700 and A1 similarly occurs along the PsaA branch of cofactors; and (iii) mutation of amino acids in close contact with the PsaA side quinone leads to changes in the spin density distribution of the reduced quinone observed by EPR.  相似文献   
930.
Gamma-secretase is a high molecular weight multicomponent protein complex with an unusual intramembrane-cleaving aspartyl protease activity. Gamma-secretase is intimately associated with Alzheimer disease because it catalyzes the proteolytic cleavage, which leads to the liberation of amyloid beta-peptide. At least presenilin (PS), Nicastrin (Nct), APH-1, and PEN-2 are constituents of the gamma-secretase complex, with PS apparently providing the active site of gamma-secretase. Expression of gamma-secretase complex components is tightly regulated, however little is known about the assembly of the complex. Here we demonstrate that Nct undergoes a major conformational change during the assembly of the gamma-secretase complex. The conformational change is directly associated with gamma-secretase function and involves the entire Nct ectodomain. Loss of function mutations generated by deletions failed to undergo the conformational change. Furthermore, the conformational alteration did not occur in the absence of PS. Our data thus suggest that gamma-secretase function critically depends on the structural "activation" of Nct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号